
Demystifying Bayesian Inference Workloads

Yu Emma Wang∗
ywang03@g.harvard.edu

Yuhao Zhu†

yzhu@rochester.edu
Glenn G. Ko∗

gko@g.harvard.edu
Brandon Reagen‡

reagen@fb.com
Gu-Yeon Wei∗ and David Brooks∗
{guyeon,dbrooks}@eecs.harvard.edu

∗John A. Paulson School of Engineering and Applied Sciences
Harvard University

†Computer Science Department
University of Rochester

‡Facebook

Abstract—The recent surge of machine learning has mo-
tivated computer architects to focus intently on accelerating
related workloads, especially in deep learning. Deep learning
has been the pillar algorithm that has led the advancement
of learning patterns from a vast amount of labeled data,
or supervised learning. However, for unsupervised learning,
Bayesian methods often work better than deep learning.
Bayesian modeling and inference works well with unlabeled
or limited data, can leverage informative priors, and has inter-
pretable models. Despite being an important branch of machine
learning, Bayesian inference generally has been overlooked by
the architecture and systems communities.

In this paper, we facilitate the study of Bayesian inference
with the development of BayesSuite, a collection of seminal
Bayesian inference workloads. We characterize the power and
performance profiles of BayesSuite across a variety of current-
generation processors and find significant diversity. Manually
tuning and deploying Bayesian inference workloads requires
deep understanding of the workload characteristics and hard-
ware specifications. To address these challenges and provide
high-performance, energy-efficient support for Bayesian infer-
ence, we introduce a scheduling and optimization mechanism
that can be plugged into a system scheduler. We also pro-
pose a computation elision technique that further improves
the performance and energy efficiency of the workloads by
skipping computations that do not improve the quality of
the inference. Our proposed techniques are able to increase
Bayesian inference performance by 5.8× on average over the
naive assignment and execution of the workloads.

Keywords-machine learning; bayesian inference; workload
characterization

I. INTRODUCTION

Recent advances in deep learning have captivated the

scientific community. Systems based on neural network

models have defeated world champion Go players [1],

surpassed humans at image classification tasks [2], and

advanced the state of the art for speech recognition [3].

However, neural networks are not the end-all solution and

in many cases are not applicable. Deep learning requires

massive datasets for training, is prone to overfitting, and is

not conducive to reasoning about causality.

Bayesian inference is another branch of machine learning

technique that complements deep learning in many ways.

Bayesian inference thrives when data is limited, and its mod-

els are more interpretable, making it possible to understand

how and why decisions are made. These benefits stem from

the ability to combine prior knowledge with new observations.

Bayesian inference is a popular topic among machine learn-

ing researchers. Among top machine learning conferences

(NIPS, ICML, and KDD), over 200 Bayesian inference papers

have been published each year since 2014 and the number is

steadily increasing. Notable milestones for Bayesian inference

include industrial applications [4], [5], [6], Bayesian program

learning for generalization of visual concepts from as few as

one example [7], and the development of an intuitive physics

engine that aids physical scene understanding [8], [9].

As with deep learning, Bayesian inference models are

computationally demanding, requiring attention from the

hardware and systems community to improve performance

and facilitate innovation. To enable systems research in

Bayesian inference and to understand the architectural

implications of these models, we present BayesSuite: a

collection of seminal, representative Bayesian inference

workloads. BayesSuite draws from rich application domains

(ranging from economics to biology) in which Bayesian

inference has been demonstrated to excel. We rigorously char-

acterize BayesSuite on general-purpose processors found in

contemporary datacenter servers. In doing so, we provide an

academic understanding of the computational characteristics

of a wide range of Bayesian inference workloads, including

performance bottlenecks that are amenable to optimization.

Our analysis leads to two major conclusions. First, while

Bayesian inference workloads show no obvious architectural

bottlenecks on single-core machines, we find that varia-

tions in the Bayesian models reveal higher sensitivity to

server architecture on multicore systems. Specifically, the

performance of the workloads with complex probability

distribution between the observed data and the underlying

features causes contention in the last-level cache (LLC). The

workloads with less complicated models result in smaller

working set sizes and thus tend to be more compute-bound.

Leveraging these observations, we developed a scheduling

and optimization mechanism that analyzes Bayesian inference

jobs and automatically identifies the server configuration most

likely to maximize its performance.

Second, we find that the workloads entail substantial

redundant computation in the form of sampling iterations.

177

2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-0746-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPASS.2019.00031

Thus, eliding unnecessary computation through convergence

detection can improve performance without reducing accu-

racy. We developed an intelligent mechanism that dynamically

determines when to terminate a job to reduce latency and

save energy without jeopardizing model accuracy.

As Bayesian inference continues to transition from aca-

demic to commercial use, bloated, proof-of-concept models

need to be refined and tuned into industrial-grade code

capable of performing at scale. We envision that our

characterizations and proposed techniques can facilitate the

deployment of Bayesian inference as a generic web service,

similar to the “deep learning as a service” paradigm provided

by Google Cloud Machine Learning Engine, Microsoft Azure

Machine Learning, and Apache MXNet on Amazon Web

Services.

This paper makes the following contributions:

• BayesSuite: a benchmark collection of state-of-the-art

Bayesian inference models for research on performance

optimization by computer architects and system design-

ers.

• A detailed characterization of the BayesSuite workloads

on datacenter server architectures. We identify key

bottlenecks to performance scaling and present insights

on performance and energy trade-offs.

• Mechanisms that automatically provision hardware

resources for specific Bayesian inference jobs in order

to optimize performance and power efficiency. Across

BayesSuite, we achieve an average speedup of 5.8×.

II. BAYESIAN INFERENCE

In this section, we briefly go over the concept of Bayesian

modeling and inference to familiarize readers with the

algorithms. This section serves only as a primer; a thorough

treatment is beyond the scope of this paper. For more details

on Bayesian inference, readers can refer to [10].

A. Bayesian Inference

Probabilistic models describe the data that could be

observed from a system and use probability theory to describe

the uncertainty or noise associated with the model. In

supervised learning, such as deep learning, models are trained

using labeled data and the uncertainty or noise is not explicitly

modeled. In a situation where we do not have enough labeled

data or when we are trying to create an uncertain relationship

between observed data of different types, we can construct

a Bayesian model and perform inference to learn what we

want given some data. This process can be done by using

Bayes’ theorem, shown as

P(θ |D) =
P(D|θ)P(θ)

P(D)
, (1)

where D is the evidence, or the observed data and θ is

the hypothesis whose probability is updated on the new

data D. We refer to P(θ |D) as the posterior probability,

the probability of a hypothesis given the observed evidence.

P(D|θ) is the probability of observing D given θ and is called

the likelihood. P(θ) and P(D) are referred to as the prior

probability and marginal likelihood, respectively. Because

P(D) does not depend on θ , the posterior probability of the

hypothesis given evidence is proportional to its likelihood

and prior probability.

Bayesian inference uses Equation (1) to find the posterior

distribution. Analytically computing the conditional probabil-

ity distribution over variables of interest becomes intractable

as the number of variables increases and the complexity of

the model grows. Our work focuses on large and complex

models for which exact inference is impractical. Instead we

use approximate inference that is tractable and still produces

satisfactory results.

B. Inference Algorithm

In this section, we illustrate the Bayesian inference algo-

rithm for computing the posterior distribution. The workloads

in this paper have different models and data, but apply the

same inference algorithm. Common approximate Bayesian

inference algorithms include sampling and optimization

techniques. This paper focuses on one of the sampling

methods; a variant of the Hamiltonian Monte Carlo algorithm

(HMC) [11], nicknamed the No-U-Turn Sampler (NUTS)

[12]. NUTS auto-tunes the Hamilton parameters including

the step size and number of steps. It is implemented in

the Stan [10] probabilistic programming framework, the

framework used in this paper. We describe the more intuitive

Metropolis-Hastings algorithm to illustrate the important

computational characteristics, which are shared with NUTS.

Algorithm Assume we have a model θ and observed data D.

The θ can be replaced with an arbitrary user-defined model.

The likelihood of the data given model θ , P(D|θ), and the

prior probability of model θ , P(θ), are known. The goal is

to estimate the posterior probability P(θ |D). Algorithm 1

shows a naive Metropolis-Hastings algorithm with multiple

Markov chains doing sampling. A Markov chain consists of

a sequence of samples, and the current sample depends on

the previous one. q determines the probability of new sample

θ ′ given previous sample θ(t− 1). u is a random number

drawn from a uniform distribution. In line 4 of Algorithm 1,

Metropolis-Hastings draws samples from arbitrary probability

distribution, often called proposal density, which results in

a random-walk behavior. NUTS explores high-dimensional

space by building a set of likely candidate points recursively,

which eliminates random-walk behavior exhibited by the

Metropolis-Hastings algorithm. In the NUTS implementation

of Stan, the acceptance rate in line 5 is found by averaging

acceptance probability across the entire candidate set. While

each iteration of NUTS tends to be more computationally

expensive, it explores the target distribution much more

efficiently, resulting in faster convergence.

178

Algorithm 1 Metropolis-Hastings Algorithm. An example

of sampling posterior P(θ |D), given observed data D, prior

P(θ), and likelihood P(D|θ).
1: for chain from 1 to nchain do
2: θ(0)∼ init
3: for t from 1 to n do
4: θ ′ ∼ q(θ |θ(t−1))

5: r =
P(θ ′)P(D|θ ′)

P(θ(t−1))P(D|θ(t−1))

6: u∼ uni f orm(0,1)
7: if u < min{r, 1} then
8: θ(t) = θ ′
9: P(D|θ(t)) = P(D|θ ′)

10: else
11: θ(t) = θ(t−1)
12: end if
13: end for
14: Collect Samples

15: end for

Computation Algorithm 1 has an outer loop over the Markov

chains and an inner loop that does sampling. Each new sample

is kept or discarded based on the Metropolis-Hastings rule

in lines 7–12. Because the current sample depends on the

previous sample, the inner loop is sequential.

There are two key computation characteristics. The first

is the sampling in line 4, which is defined by specific

models, and the computation of acceptance rate in line 5,

which involves computations such as likelihood computation

iterating over all observed data. The second characteristic

is the loop structure. The outer loop drives the Markov

chains. Its iterations are independent, so the chains can run

on different cores in parallel.

Other Algorithms Other popular practical algorithms in-

clude variational inference, which approximates probability

densities though optimization. However, these techniques do

not output posterior distributions as sampling algorithms do,

and do not have guarantees to be asymptotically exact. They

are not as robust as sampling algorithms and need carefully

crafted models and data types to avoid numerical issues,

which are sometimes unavoidable. We selected NUTS as it

has been widely used in the Stan community, which gives us

access to a rich collection of workloads to study. We briefly

discuss the performance of HMC together with NUTS in

Section IV-A.

III. BAYESSUITE: BAYESIAN INFERENCE WORKLOADS

In this section, we present BayesSuite1: a Bayesian infer-

ence benchmark suite with models and datasets representing

real-world use cases. We study Bayesian inference workloads

developed in Stan [10]. Each BayesSuite workload consists

1We will publish the source code of BayesSuite.

of a model and data, both of which are fed to the NUTS

inference algorithm implemented in the framework.

Workloads were selected to cover key application do-

mains in which Bayesian inference has excelled, leveraging

important models and real datasets, and to have diverse

execution behaviors. The workloads are selected from

StanCon 2017 [29], StanCon 2018 [30], Knitr [25], and

BPA [27]. Below we briefly introduce the workloads. Table

I summarizes the models, applications, sources, and data for

each workload. We also list the corresponding publications

of the workloads. If the work has not been published, we

list the corresponding source.

12cities: Shows that lowering speed limits saves pedes-

trian lives. Uses Poisson regression on data for 12 cities

obtained from FARS [14], the Fatality Analysis Reporting

System maintained by the National Highway Traffic Safety

Administration.

ad: Quantifies the effectiveness of various advertising

channels for the movie industry. Survey data combining

demographics with chosen advertising channels are fitted

into a logistic regression model.

ode: Builds ordinary differential equations (ODE) to

quantitatively study how drug compounds circulate in and

affect the patient’s body. Margossian et al. applied the

Friberg-Karlsson semi-mechanistic model to this nonlinear

system [16].

memory: Models the human mechanism for memory

retrieval in sentence comprehension [18]. Data was collected

via experiments measuring recall accuracy and latency after

participants were asked to memorize words or numbers of

letters. This workload implements a direct access model

based on a content-addressable memory system [31].

votes: Forecasts presidential elections in all states of the

US from 2020 to 2028 using historical election data from

1976 to 2016. A Gaussian process model is applied to the

observed votes. Gaussian processes are very good at modeling

observations over a continuous domain such as space or time.

tickets: Investigates whether the New York Police De-

partment manages officers with productivity targets, which

contravenes New York state law. A generative model is

proposed to describe how officers write traffic tickets. The

trained model indicates that the officers alter their ticket

writing substantially to match departmental targets.

disease: Models the progression of Alzheimer’s disease,

which is described by biomarkers and eventual loss of

memory and decision-making functions. It is useful for

clinical and biological purposes to understand the order of

biomarkers’ deterioration and their distributions for various

stages of the disease. This model uses I-splines to model the

monotonically increasing progression and is fitted with real

patient data.

racial: Tests for racial bias in vehicle searches by police.

Simoiu et al. developed a new statistical test of discrimination,

the threshold test [23]. The test uses a hierarchical latent

179

Table I: A summary of BayesSuite workloads.
Name Model Application Reference Data

12cities Poisson Regression Does lowering speed limits save pedestrian lives? [13] FARS [14]
ad Logistic Regression Advertising attribution in the movie industry StanCon 2017 [15]
ode Friberg-Karlsson Solving ordinary differential [16] [17]

Semi-Mechanistic equations of non-linear systems
memory Hierarchical Bayesian Modeling memory retrieval [18] [18]

in sentence comprehension
votes Hierarchical Forecasting presidential votes StanCon 2017 historical (1976-2016)

Gaussian Processes presidential votes
tickets Logistic Regression Do police officers alter the ticket [19] [20]

writing to match departmental targets?
disease Logistic Regression Measuring the continually worsening [21] [22]

progression of Alzheimer’s disease
racial Hierarchical Bayesian Testing for racial bias in vehicle searches by police [23] [23], [24]

butterfly Hierarchical Bayesian Estimating butterfly species Knitr [25] [26]
richness and accumulation

survival Cormack-Jolly-Seber Estimating animal survival probabilities BPA [27] [28]

Bayesian model, and is applied to a dataset of 4.5 million

police stops in North Carolina. It is found that when searching

minorities, officers apply lower standards of evidence than

when searching whites.

butterfly: Uses a hierarchical Bayesian model developed

by Dorazio et al. to estimate butterfly species richness and

accumulation [26]. Statistical estimation is necessary due

to the difficulty of collecting data in grasslands with small

habitat fragments in south-central Sweden, where the study

was conducted. Predictions show that sample locations could

be reduced by half without affecting the estimation.

survival: Cormack-Jolly-Seber (CJS) models estimate

animal survival from capture-recapture data collected by

capturing, tagging, and releasing animals in the population

being studied. Feeding data on recapture rates into the CJS

model allows survival rate to be estimated.

IV. PERFORMANCE ANALYSIS

In this section, to understand the execution behavior of

Bayesian inference on general-purpose microprocessors, we

conduct system- and architecture-level analysis of BayesSuite.

Through single core performance analysis, we show that most

BayesSuite workloads have higher computational efficiency

than conventional sequential CPU benchmarks like SPEC

CPU2006, except for some outliers suggesting possible

computational bottlenecks (Section IV-A). By studying

multicore performance, we further find that the bottleneck

for BayesSuite multicore scaling is last-level cache (LLC)

size (Section IV-B).

A. Single Core Performance

In this subsection, we study the single core performance

of BayesSuite. The experiments are conducted on a mod-

ern CPU, the Intel R© CoreTM i7-6700K, which has four

physical cores, 4.2 GHz single-thread frequency, an 8 MB

last-level cache, and 34 GB/s max memory bandwidth. The

performance characteristics are collected with performance

counters. The sampling does not affect the results because the

workloads behave consistently throughout the execution. We

use RStan, the R interface of Stan, with version 2.17.3 [32]

and the R version is 3.4.4.

Workload Diversity The varying complexities of inference

models and datasets among the workloads lead to variations

in runtime behavior. Figure 1 shows several key dynamic

characteristics of the workloads, including instructions per cy-

cle (IPC), instruction cache misses per thousand instructions

(MPKI), branch misprediction MPKI, last-level cache (LLC)

MPKI, average memory bandwidth, and total execution time.

Total execution time and average bandwidth vary signifi-

cantly across benchmarks, and the workloads also differ at

the architecture level. For instance, the IPC of votes is more

than 1.7× that of butterfly. Similar variation in the other

microarchitecture characteristics demonstrate BayesSuite’s

diversity.

Benign Architectural Behavior Although Bayesian infer-

ence workloads differ in absolute behavior, they tend to

employ CPU microarchitecture efficiently, as suggested by

the IPC values in Figure 1a. Instruction-level parallelism is

greater in Bayesian inference workloads than in traditional

sequential applications like event-driven web servers [33] and

most SPEC CPU2006 benchmarks. Higher IPC results from

efficient instruction supply and data feeding. Specifically, for

most workloads the instruction cache MPKI (Figure 1b)

and branch misprediction MPKI (Figure 1c) are several

times lower than for SPEC CPU2006 [34] and datacenter

workloads [35]. Similarly, the LLC miss rate of Bayesian

inference workloads is also insignificant, corroborated by the

low bandwidth requirement (hundreds of MB/s for most of

the workloads shown in Figure 1e, compared to tens of GB/s

reached in server systems). The low data bandwidth indicates

that the working set of Bayesian inference workloads can

largely fit in on-chip memory.

Computation Bottlenecks Although the average perfor-

mance of BayesSuite is benign, there are some special cases.

The i-cache and LLC MPKI of tickets is higher than that of

other BayesSuite workloads. By studying multicore behaviors

180

(a) IPC (b) I-Cache MPKI (c) Branch MPKI (d) LLC MPKI (e) Bandwidth
(MB/s)

(f) Total Execution
Time (s)Figure 1: Runtime statistics of BayesSuite.

in Section IV-B, we will show more workloads suffering from

architectural bottlenecks in details. The execution times of

tickets, memory, disease and ode are much higher, which is

not intrinsic but an algorithmic artifact. We will examine it

in Section VI.

Performance of HMC The single-core performance char-

acteristics of HMC are very similar to NUTS. As a result

we do not include the HMC data and focus on NUTS in

the rest of this paper. The IPC of HMC ranges from 1.5 to

2.7. The LLC MPKI of tickets is 8.3, and that of the other

workloads is below 1 MPKI. The memory bandwidths of ad
and tickets are over 12 GB/s and that of memory is close to

10 GB/s. The memory bandwidths of other workloads are

all below 100 MB/s.

Architectural Implication The benign architectural behavior

of BayesSuite workloads on a modern CPU, together with

the CPU’s general-purpose programmability, suggests that

the CPU is a good execution target for Bayesian inference.

The observed cache bottleneck is the exception, which we

will analyze in the next section. We will discuss GPUs and

specialized hardware accelerators in Section VII.

B. Architectural Bottleneck

In this subsection, we analyze the performance bottlenecks

of BayesSuite. We find that the multicore scalability of

BayesSuite is strongly correlated with last-level cache (LLC)

size.

Parallelism Opportunity Sampling algorithms are inher-

ently parallel in that the computations of different chains

are independent. The for loop at line 1 of Algorithm 1

can be completely parallelized, providing opportunities for

performance improvement using multiple cores. We sweep

the number of CPU cores used while keeping 4 Markov

chains as suggested in [36], and iterations as defined in the

original applications.

Performance Analysis As shown in the previous section,

branch misses are minimal, the i-cache is private to each

core, and memory bandwidth correlates to LLC miss rates.

Therefore we focus on the LLC miss rate in this section and

show the IPC, LLC MPKI, and speedup in Figure 2. The

Figure 2: The IPC, LLC miss rates, and speedups of running

the workloads on from 1 core to 4 cores of a Skylake

processor. The plot shows that workloads such as ad, survival
and tickets have increasingly frequent LLC misses and lower

IPC. Therefore their speedup saturates at two cores.

workloads are sorted by the LLC MPKI of 4 cores. We use

speedup and IPC as performance metrics.

Speedup is typically the most important performance

metric for users. Across BayesSuite, the speedup using four

cores is less than 4 because the execution times of the 4

chains are not equal and the 4-core execution time depends

on the slowest chain, which will be explained in Section VI.

We observe that the performance scaling is constrained by

LLC misses. This is because when using one core, the four

chains are executed sequentially and only one chain needs

to fit into the LLC at a time. On the other hand, when using

four cores with each core executing one chain, the global

working set becomes 4× larger and sometimes does not fit

in the LLC. This causes more frequent accesses to off-chip

memory, thereby limiting performance scalability.

In Figure 2, when 4-core LLC MPKI is larger than 1, the

speedup does not scale linearly with the number of cores, as

with ad, survival and tickets, whose maximum speedups are

less than 2. tickets has especially frequent LLC misses, up

to 7.7 MPKI for 1 core and 20 MPKI for 4 cores. The high

LLC miss rate leads to up to 25 GB/s memory bandwidth

181

for the three workloads, which is not shown here.

The speedup is affected not only by LLC miss rates but

also by the fact that multicore latency is constrained by the

slowest chain. Thus, we also compare IPC values, which helps

to see how the LLC affects the efficiency of the architecture.

As the number of cores in use increases, workloads such

as memory, 12cities, ad, survival, and tickets have lower

IPC and more LLC misses. Increased working set size leads

to more frequent LLC misses because every chain fetches

data independently. The resulting performance degradation

reduces IPC.

Architectural Implication LLC size is the major archi-

tectural bottleneck for BayesSuite workloads. Therefore,

distinguishing workloads with large LLC needs before

execution is valuable for computing resource management.

V. BOTTLENECK RESOLUTION

In the previous section, we showed that BayesSuite

workloads are constrained by LLC size, making it important

to identify workloads with high LLC needs. To avoid the

bottleneck, we first demonstrate our LLC miss prediction,

using static indicators extracted from the model and data

(Section V-A). We then show that prediction can facilitate

a speedup of 1.16× through scheduling of BayesSuite

workloads on appropriate platforms (Section V-B).

A. Last Level Cache Miss Prediction

We find 4-core LLC miss rates can be predicted using a

static feature, the modeled data size. Modeled data are the

observed data required for finding a likelihood distribution.

More specifically, modeled data are used to compute the

acceptance rate in line 5 of Algorithm 1. A larger modeled

data size translates to more computation and possibly a larger

working set size. Note that the exact sizes of modeled data

(on the order of KBs) are not working set sizes (on the

order of MBs), but are only proportional to them, because

there are more computations and intermediate variables in

the inference algorithm, such as the likelihood and the

Hamiltonian computation, and the automatic tuning in NUTS.

Figure 3 plots 4-core LLC miss rates against corresponding

modeled data sizes. Points with labels suffixed -h and -q are

for runs using half and a quarter of the original modeled data,

respectively. We find that modeled data sizes are positively

correlated with the 4-core LLC miss rates. Particularly for

workloads with LLC MPKI larger than 1, modeled data size

accurately predicts LLC miss rate.

For the workloads with LLC MPKI less than 1, the

correlation is weaker, so the points with y-axis less than

1 do not form a straight line. That is because when the LLC

miss rate is low, it is more affected by factors such as the

memory prefetcher, the design of the LLC, including its size

and associativity, the structure of the cache hierarchy, and

the replacement policy.

Figure 3: LLC miss rate prediction. For workloads with LLC

miss rates larger than 1 MPKI, modeled data size predicts

miss rate accurately. Points with labels suffixed -h and -q
are for runs using half and a quarter of the original modeled

data, respectively.

Architectural Implications Based on Figure 3, workloads

with larger than 1 LLC MPKI including tickets, survival,
and ad can be identified and predicted by setting a proper

threshold for modeled data size. Resource management

mechanisms can use the prediction to make better use of

available computing resources. The threshold can be adjusted

accordingly when applied to other machines.

B. Evaluation

In this section, we show that choosing proper platforms

based on LLC miss prediction achieves 1.16× speedup in

BayesSuite compared to using one platform alone.

1) Experimental Setup: We use two contemporary Intel

CPU platforms in our evaluation: Broadwell (E5-2697A v4),

and Skylake (i7-6700K), each with distinct specifications.

We summarize the specifications in Table II, including

microarchitecture, technology, peak frequency, physical core

count, LLC size, memory bandwidth, and thermal design

power (TDP).

We use the Broadwell server as our baseline because it

was launched in 2016, later than the Skylake machine. The

Broadwell processor has a large LLC size (40 MB) with

only modest peak CPU frequency (3.6 GHz). In contrast, the

Skylake processor has a high CPU frequency but small LLC

size. We show that they naturally complement each other for

BayesSuite workloads.

2) Performance Comparison: According to the models

presented in Section V-A, the LLC-bound workloads are ad,

survival, and tickets. In order to optimize performance, we

choose to run them on Broadwell for its large LLC and other

workloads on Skylake. We use Broadwell as the baseline and

we achieve 1.16× speedup by adding a Skylake machine.

In Figure 4, we compare the speedup over Broadwell,

IPC, and LLC MPKI of the platforms running with 4 cores.

Speedup shows the end-to-end performance. IPC shows the

throughput and performance regardless of frequency. LLC

miss rate is used to explain speedup and IPC differences.

Skylake outperforms Broadwell on all workloads other than

ad, survival, and tickets. Broadwell outperforms Skylake in

182

Table II: A summary of experiment platforms.
Tech Turbo Freq LLC Bandwidth

Codename Processor # Microarch (nm) (GHz) Cores (MB) (GB/s) TDP (W)
Skylake i7-6700K Skylake 14 4.2 4 8 34.1 91

Broadwell E5-2697A v4 Haswell 14 3.6 16 40 78.8 145

Figure 4: Performance comparison of the platforms.

speedup and IPC on those three workloads because its larger

(40 MB) LLC leads to lower LLC miss rates. The IPC of

memory and 12cities is higher on Broadwell, also due to the

much lower LLC miss rates, but Skylake’s high frequency

gives it a slightly better overall speedup than Broadwell.

Architecture Implication Following predictions by models

in Section V, we run ad, survival, and tickets on Broadwell

and other workloads on Skylake. This yields an average

speedup of 1.16×. LLC size and frequency are the key factors

determining the performance of BayesSuite workloads.

VI. ALGORITHM CONVERGENCE

Previous sections analyze the performance and architec-

tural bottlenecks of BayesSuite. In this section, we study

algorithmic aspects, the convergence and result quality of

BayesSuite benchmarks. The number of sampling iterations

(line 3 in Algorithm 1) is selected by users, and we find

that all BayesSuite workloads have redundant iterations. We

propose runtime convergence detection for users who want

quick inference results with minimal overhead (Section VI-A).

We then show that with convergence detection, BayesSuite

workloads reach better design points and save 70% energy, on

average. Overall, we speed up BayesSuite by 5.8× with con-

vergence detection and LLC miss prediction (Section VI-B).

A. Convergence Study

Convergence detection is closely related to the number

of chains used. Multiple chains prevent converging to local

optima, and complex models prefer more chains. Convergence

detection is based on the Gelman-Rubin diagnostic (R̂) [37],

which quantifies sample variations within and between chains.

A smaller R̂ indicates more consistent samples, and when R̂
reaches 1, chains have converged completely. As suggested

by Brooks et al. [36], we typically use 4 chains. Because

several iterations are needed to warm up the chains, we only

use the second half of the samples for inferring the posterior

distribution [36]. A value of R̂ less than 1.1 is taken as

indicating convergence [36].

We study the convergence process and confirm that when

using multiple chains, once R̂ is less than 1.1, the results

(posterior distributions) have good quality. To judge quality,

we estimate the ground truth by running each benchmark

with twice as many iterations as were initially specified by

the model developer. To evaluate the intermediate results, we

compute the KL divergence (a measure of how much one

distribution diverges from another [38]) between intermediate

results and the ground truth. A smaller KL divergence

indicates that the result is closer to the ground truth.

We conduct a convergence study for BayesSuite and

find that on average, the workloads have over 70% excess

iterations. As an example, we show the convergence of

12cities in Figure 5. The blue line is R̂ and the green

line shows KL divergence. With more iterations, the KL

divergence decreases monotonically, showing that the results

are getting closer to the ground truth. The trace of R̂ fluctuates

because the four independent chains are exploring different

regions of the space. When they are sampling from the same

region, R̂ gets small; when one chain happens to jump out of

that region, R̂ increases. At the 600th iteration (orange dots),

R̂ is less than 1.1 for the first time and the KL divergence is

minimal, indicating that the results are close to the ground

truth. The original number of iterations of 12cities is 2000.

We find it converges after 600 iterations, eliminating 70%

of the sampling iterations as unnecessary.

Reducing excess iterations can increase performance, but

the iteration reduction percentage does not directly translate

to latency saving. That is because the time required to auto-

tune Hamiltonian parameters in NUTS may vary depending

on the position of the Markov chain. Within a single chain,

the latency per iteration is smaller after the chain converges,

and different chains have different latencies. When multiple

chains run in parallel, the overall latency is constrained by

the slowest chain. For example, for 12cities with 4 chains

of 2000 iterations, the latency ratio of the slowest to the

fastest chain is 1.7. The latency of 2000 iterations is 865

seconds and that of 600 iterations is 401 seconds, thus the

latency is reduced by 53%. For the same reason, we should

183

ConvergeConverge

Figure 5: The convergence process of 12cities in log scale.

The blue line is R̂, for detecting convergence. The green line

is the KL divergence between the current result and ground

truth. The orange dots mark the convergence point.

Figure 6: Design space exploration examples. ad and survival
are LLC-bound. ode and memory are compute-bound. The

design points in triangles, which are achievable with conver-

gence detection, are much closer to the energy oracle (red

star) than the original user setting (blue star).

expect the average latency savings to be less than the iteration

reductions.

Runtime Convergence Detection Detecting convergence at

runtime can be implemented by dynamically computing R̂ in

the framework, such as Stan in this case. Instead of executing

a preset number of iterations, as in line 3 of Algorithm 1,

the workload exits each iteration when it is determined to

have converged. This detection is optional, for statisticians

whose interests are in developing new models and would

like to choose the number of iterations and test the model.

But convergence detection can give quick results for those

interested in using existing models with their own data.

Overhead Analysis We implement the computation of R̂
in C++, based on the algorithm in [37]. We consider the

worst case by taking the maximum number of iterations in

BayesSuite (2000) and half of the samples for inference

(i.e., 1000 data points of 4 chains). That takes 0.06 seconds

on a single core of Skylake, which is minimal. In reality,

optimizations can be applied to reduce the overhead.

Architectural Implication By our analysis, the overhead of

convergence detection is minimal, and the savings are huge.

B. Design Space Exploration

We evaluate the convergence detection mechanism using

design-space exploration (DSE) techniques and compare the

Figure 7: A summary of energy savings of our design points

and the energy oracle.

optimization decision with other (suboptimal) design points

in terms of latency and power savings.

Our DSE setup considers three major parameters: the

number of CPU cores, the number of chains, and the number

of iterations. We show the design space of 4 representative

workloads on Skylake as a case study in Figure 6. The

blue stars are original user settings. The triangle markers

denote the design points that are achievable with convergence

detection under 1, 2, and 4 cores. We refer to the design

point that has the lowest energy consumption as the energy
oracle, as denoted by red stars in the figure.

We find that the energy oracle design points always use

only 1 or 2 chains and a small number of iterations while

user-specific settings always use 4 chains with a much

higher number of iterations. Although they have small KL

divergence, without knowing the ground truth a priori, it is

infeasible to use only 1 or 2 chains; hence, the oracle.

Energy Savings The triangles that we choose are much

closer to the red stars than the original user settings. When

applying this technique, a scheduler can be programmed to

choose one of the triangles to optimize power or latency. In

this section, we choose to use energy as the cost function,

considering both latency and power.

We summarize our energy savings for 10 workloads on

two platforms in Figure 7. The savings are in percentage

relative to the original user settings. The average energy

saving is 70% across 2 platforms and 10 workloads.

Architectural Implication BayesSuite workloads reach bet-

ter design points with convergence detection.

C. Overall Speedup

We present the overall speedup resulting from the tech-

niques in this paper: convergence detection in Section VI-A

and selecting the best platform in Section V. In Figure 8 we

show the overall speedups of BayesSuite over the baseline.

ad, survival, and tickets are on Broadwell and the rest of the

workloads are on Skylake. ode and memory achieve higher

speedups than the energy oracle, which can be explained

using Figure 6. ode and memory use 4 cores (orange triangles)

on Skylake, and have lower latency than the red stars, the

oracle points. The same explanation applies to disease.

184

Figure 8: Overall speedup of the techniques proposed in this

paper. Note that the oracle points are with respect to energy,

not performance.

With the techniques proposed, the average speedup of

BayesSuite is 5.8×, and the oracle average speedup is 6.2×,

over the baseline with no convergence detection running on

the Broadwell server.

VII. IMPLICATIONS FOR FUTURE ACCELERATION

Intelligent scheduling on today’s server processors can

readily provide performance improvement for Bayesian

inference jobs. Pushing the efficiency a step further requires

us to apply hardware specialization. Previous work on

hardware specialization only focuses on a specific type

of model. In this section, based on the insights that we

gained from analyzing and improving workload efficiency

on CPUs, we examine opportunities to accelerate Bayesian

inference using specialized hardware such as GPUs, FPGAs,

and ASICs, in preparation for an accelerator-centric system

to further speed up Bayesian inference workloads.

We first discuss the choice of different acceleration

approaches. We argue that a programmable SIMD archi-

tecture augmented with special functional units is a good

accelerator style that matches well with a wide range of

Bayesian inference workloads (Section VII-A). We then

discuss the memory system requirements on LLC and i-

cache (Section VII-B).

A. Hardware Choice

The first and foremost question is which accelerator style,

e.g., SIMD or CGRA, is a good fit for Bayesian inference

workloads. We find that these workloads exhibit both coarse-

grained and fine-grained parallelism.

Chain-Level Parallelism Both coarse-grained and fine-

grained parallelism exist in sampling algorithms. Coarse-

grained parallelism typically manifests at the chain level (line

1 in Algorithm 1), which can be captured by a multicore

CPU as we discussed in Section IV-B. To better exploit

the chain-level parallelism, the key is to address the LLC

bottleneck inhibiting CPU core scaling shown in Figure 2.

Computation Parallelism Within a chain, there are oppor-

tunities for parallelism in the computation. For example, in

the acceptance rate computation iterating through a series of

observed data (line 5 in Algorithm 1), the computation of

each observed data point can be conducted in parallel. At a

finer grained level, BayesSuite workloads contain a diverse

collection of vector and matrix operations beyond matrix

multiplication, indicating the importance of architectural

support for such operations. Therefore the workloads can

benefit from the parallelism of SIMD-style hardware like

GPUs.

Variable Sampling Parallelism The sampling of variables

(line 4 in Algorithm 1) provides parallelism opportunities as

well, which can benefit from SIMD hardware or specialized

accelerators. When presenting the models as graphs, in which

the model variables are nodes and variable dependencies are

edges, the variables at the same layer can be sampled in

parallel. Previous work on FPGAs and ASICs exploits the

parallelism [39], [40]. With multiple sampling units on chip,

the sampling latency can be shortened.

It is beneficial to implement the sampling units as acceler-

ators. The current implementation of sample drawing needs

cumulative distribution functions (CDFs) of corresponding

distributions. Thus the implementation depends on individual

distributions. We study the distributions in BayesSuite and

find the most popular distributions are Gaussian and Cauchy.

It is worth building accelerators for the most popular

distributions. The CDFs use functions with values stored

in lookup tables, such as the error function er f (Gaussian)

and arctangent function atan (Cauchy), which introduces

overhead to the system and trades off precision for efficiency.

Sampling accelerators can help to reduce system overheads

by having their own scratchpad memory or private cache.

Parallelism in other Algorithms Finally, we note that

different inference algorithms exhibit different opportunities

for parallelism. For instance, sampling algorithms such as

the one studied in this paper are general but sequential.

Exact inference has more parallelism but the complexity is

exponential. Some recent work combines sampling and exact

inference to get the parallelism of exact inference and the

linear complexity of sampling [41], [42], [43]. The general

idea is to do exact inference with a subset of the data within

the MCMC sampling iterations. Such algorithms, exposing

ample parallelism, are promising to explore in future work.

Need for Programmability As we discussed, the workloads

have very diverse models, requiring different combinations

of matrix, vector, and scalar operations, as well as different

preferences for distributions. Thus, to accelerate Bayesian

inference workloads, we need to program the models.

B. Memory System

To reduce the overhead of transferring data between LLC

and main memory, the LLC should be large enough to contain

the whole working set. According to results in Figure 4, an

LLC of 2 MB per core (8 MB / 4 cores on Skylake) is large

enough for workloads other than ad, survival, and tickets.

An LLC smaller than 10 MB per core (40 MB / 4 cores on

Broadwell) is enough to hold ad and survival. Workloads

like tickets need larger LLC. However, with larger datasets

applied to Bayesian models, simply scaling up the LLC is not

185

the solution. Instead, the inference algorithm should be tuned

to subsample the data such that the working set fits the LLC.

Figure 3 can be used to estimate the proper sub-sampled

data size.

In addition to LLC size, a 32 KB i-cache constrains the

performance of tickets, as shown in Figure 1, and leads to

high LLC miss rates in Figure 4. Thus the hardware needs

i-caches larger than 32 KB to better serve workloads like

tickets.

VIII. RELATED WORK

In this section, we compare and summarize the previous

work related to Bayesian models, inference algorithms,

hardware advancement of Bayesian inference, probabilistic

programming, and workload characterization.

Bayesian models In addition to the BayesSuite workloads,

Bayesian inference has been applied to image classifica-

tion [7], [44], semantics analysis [45], language learning [46],

program synthesis [7], [47], [48], intuitive physics [9], [8],

[49], [50], and structure learning [51], [52], [53]. A Bayesian

approach that is sometimes called Bayesian neural networks

(BNN) [54] is being applied to deep learning to learn weight

distributions. These models are known to achieve better

results by using optimization techniques, rather than more

general and easy-to-use approaches like NUTS. It is important

to note that models can have varying results, depending on

the inference algorithm used.

Inference Algorithms Exact inference is often intractable as

it has exponential complexity, while sampling is linear with

regard to the number of samples [55]. This paper focuses on

NUTS, a variant of Hamiltonian Monte Carlo that requires

no hand-tuning of step size and number of steps [12]. It

is a turnkey sampling method that can be used in a black-

box fashion and has been adapted by Stan as the default

inference engine. Other sampling algorithms include Gibbs

sampler, Hamiltonian Monte Carlo, slice sampling, sequential

Monte Carlo, and particle Markov chain Monte Carlo [11].

Variational inference is an optimization algorithm that tends

to be fast but has no guarantee on convergence to global

optima [56].

We discussed the combination of sampling and exact

inference in Section VII-A [41], [42], [43]. Those hybrid

algorithms have the potential to benefit from parallel hardware

such as GPUs and we plan to explore them in future work.

Hardware Advancements Efforts have also been made to

speed up Bayesian inference with specialized hardware. The

BAMBI project2 proposed hardware implementations of

probabilistic computations [40], [57], [58]. Mansinghka et

al. have built stochastic circuits and evaluated them with

Markov Random Fields and the Dirichlet Process Mixture

Model [55], [39]. Some of the acceleration work has been

2Bottom-up Approaches to Machines dedicated to Bayesian Inference:
www.bambi-fet.eu

done as parallel implementations on GPUs [59], [60], [61]

and scalable CPUs [62], [63]. Furthermore, there are FPGA

and ASIC implementations accelerating BNNs [64] and

Markov Random Fields on perceptual applications [65],

[66]. [67] uses a novel device to implement the sampling

procedure.

These projects primarily focus on speeding up a specific

type of model or application and often require substantial

effort for programming GPUs or designing the hardware.

Our work is the first in the literature to introduce Bayesian

inference to the architecture community as a key machine

learning technique and to reveal computational bottlenecks

across a suite of benchmarks on commodity datacenter CPUs.

Probabilistic Programming Some probabilistic program-

ming frameworks focus mostly on language design and

expressiveness [55], and some provide efficient sampling

for a certain subset of models [68], [69], [70]. Infer.NET

focuses on variational approximation [71]. TensorFlow Prob-

ability [72] and Edward [73] support distributed and parallel

training on top of TensorFlow, and Pyro [74] is based on

PyTorch. We choose Stan mainly because of its unmatched

popularity in the science community.

Workload Characterization People develop benchmark

suites to facilitate the advancement of architecture [75],

[76], [77] or to introduce important workloads [78], [79],

[80], as BayesSuite does. We use static workload features

to estimate dynamic characteristics, similar to [81], and we

are different by focusing on a key bottleneck of Bayesian

inference. Therefore our static analysis has minimal overhead.

IX. CONCLUSION

The advances enabled by deep learning have overshadowed

other aspects of the vast field of machine learning. Bayesian

inference is a particularly important machine learning tech-

nique that complements deep learning in many domains. This

paper introduces BayesSuite, a suite of Bayesian inference

workloads to help bridge the gap between Bayesian inference

researchers and computer architects. Through detailed char-

acterization, we show that these workloads exhibit diverse

behaviors that call for a variety of processor architectures.

They also entail inherent redundancy that leads to execution

inefficiency. We propose a scheduling mechanism and a

computation elision technique to automatically speed up

Bayesian inference workloads. Experiments and evaluations

conducted on real systems show that we speed up BayesSuite

workloads by 5.8× on average.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their thoughtful comments and constructive suggestions.

The authors would like to thank Bob Adolf, Glenn Holloway,

Svilen Kanev, Lifeng Nai, Margo Seltzer, and Cliff Young

for their feedback. This work was supported in part by

the Center for Applications Driving Architectures (ADA),

186

one of six centers of JUMP, a Semiconductor Research

Corporation program co-sponsored by DARPA. The work

was also partially supported by NSF grant # CCF-1438983

and Intel.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, pp. 1097–
1105, 2012.

[3] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,
E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng,
G. Chen, et al., “Deep speech 2: End-to-end speech recognition
in English and Mandarin,” in International Conference on
Machine Learning, pp. 173–182, 2016.

[4] R. Analytics, “Google uses R to calculate ROI on advertising
campaigns,” 2014. http://blog.revolutionanalytics.com/
2014/09/google-uses-r-to-calculate-roi-on-advertising-
campaigns.html.

[5] B. Jitwasinkul, B. H. W. Hadikusumo, and A. Q. Memon, “A
Bayesian belief network model of organizational factors for
improving safe work behaviors in thai construction industry,”
Safety science, vol. 82, pp. 264–273, 2016.

[6] D. Ohlssen, “An industry perspective of the value of Bayesian
methods,” 2016. https://pharmacy.ucsf.edu/sites/pharmacy.ucsf.
edu/files/ohlssen.pdf.

[7] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-
level concept learning through probabilistic program induction,”
Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[8] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum,
“Simulation as an engine of physical scene understanding,”
Proceedings of the National Academy of Sciences, vol. 110,
no. 45, pp. 18327–18332, 2013.

[9] J. Hamrick, P. Battaglia, and J. B. Tenenbaum, “Internal
physics models guide probabilistic judgments about object
dynamics,” in Proceedings of the 33rd annual conference
of the cognitive science society, pp. 1545–1550, Cognitive
Science Society Austin, TX, 2011.

[10] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, Bayesian data analysis, vol. 2. Chapman &
Hall/CRC Boca Raton, FL, USA, 2014.

[11] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan,
“An introduction to MCMC for machine learning,” Machine
learning, vol. 50, no. 1-2, pp. 5–43, 2003.

[12] M. D. Hoffman and A. Gelman, “The No-U-Turn sampler:
adaptively setting path lengths in Hamiltonian Monte Carlo,”
Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1593–1623, 2014.

[13] J. Auerbach, C. Eshleman, and R. Trangucci, “A hierarchical
model to evaluate policies for reducing vehicle speed in major
American cities,” arXiv preprint arXiv:1705.10876, 2017.

[14] “Fatality analysis reporting system,” https://www.nhtsa.gov/
research-data/fatality-analysis-reporting-system-fars.

[15] N. Lei, Victor Sanders and A. Dawson, “Advertising
attribution modeling in the movie industry,” 2016.
https://github.com/stan-dev/stancon talks/blob/master/
2017/Contributed-Talks/03 lei/ad attribution.Rmd.

[16] C. Margossian and W. R. Gillespie, “Stan functions for
Bayesian pharmacometric modeling,” in Journal of Phar-
macokinetics and Pharmacodynamics, vol. 43, pp. S52–S52,
SPRINGER/PLENUM PUBLISHERS 233 SPRING ST, NEW
YORK, NY 10013 USA, 2016.

[17] K. T. Baron, M. R. Gastonguay, A. Bioavailability, I. SS,
and M. ADDL, “Simulation from ODE-based population
PK/PD and systems pharmacology models in R with mrgsolve,”
Omega, vol. 2, p. 1x1, 2015.

[18] B. Nicenboim and S. Vasishth, “Models of retrieval in sentence
comprehension: A computational evaluation using Bayesian
hierarchical modeling,” arXiv preprint arXiv:1612.04174,
2016.

[19] J. Auerbach, “Are New York City drivers more likely to get a
ticket at the end of the month?,” Significance, vol. 14, no. 4,
pp. 20–25, 2017.

[20] “Parking or moving violation tickets in New York
City between january 2014 and december 2015.
https://raw.githubusercontent.com/jauerbach/Seventy-Seven-
Precincts/master/data/tickets.csv.zip,”

[21] A. A. Pourzanjani, B. B. Bales, L. R. Petzold, and M. Harring-
ton, “Flexible modeling of Alzheimer’s disease progression
with I-splines,” 2018.

[22] C. R. Jack Jr, M. A. Bernstein, N. C. Fox, P. Thomp-
son, G. Alexander, D. Harvey, B. Borowski, P. J. Britson,
J. L. Whitwell, C. Ward, et al., “The Alzheimer’s disease
neuroimaging initiative (ADNI): MRI methods,” Journal of
Magnetic Resonance Imaging: An Official Journal of the
International Society for Magnetic Resonance in Medicine,
vol. 27, no. 4, pp. 685–691, 2008.

[23] C. Simoiu, S. Corbett-Davies, S. Goel, et al., “The problem
of infra-marginality in outcome tests for discrimination,” The
Annals of Applied Statistics, vol. 11, no. 3, pp. 1193–1216,
2017.

[24] “A dataset of 4.5 million stops conducted by the
100 largest local police departments in North Car-
olina. https://github.com/stan-dev/stancon talks/blob/master/
2018/Contributed-Talks/11 simoiu/north carolina.RData,”

[25] Y. Xie, knitr: A General-Purpose Package for Dynamic Report
Generation in R, 2016. R package version 1.15.1.

[26] R. M. Dorazio, J. A. Royle, B. Söderström, and A. Glimskär,
“Estimating species richness and accumulation by modeling
species occurrence and detectability,” Ecology, vol. 87, no. 4,
pp. 842–854, 2006.

[27] M. Kéry and M. Schaub, Bayesian population analysis using
WinBUGS: a hierarchical perspective. Academic Press, 2011.

[28] Complete code and data files of book ”Bayesian population
analysis using WinBUGS”. http://www.vogelwarte.ch/de/
projekte/publikationen/bpa/complete-code-and-data-files-of-
the-book.html.

[29] “Stancon 2017,” 2017. http://mc-stan.org/events/stancon.

[30] “Stancon 2018,” 2018. http://mc-stan.org/events/stancon2018/.

[31] B. McElree, “Sentence comprehension is mediated by content-
addressable memory structures,” Journal of psycholinguistic
research, vol. 29, no. 2, pp. 111–123, 2000.

[32] Modeling Language User’s Guide and Reference Manual,
Version 2.17.0. http://mc-stan.org/users/documentation/.

187

[33] Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, “Mi-
croarchitectural implications of event-driven server-side web
applications,” in Proceedings of International Symposium on
Microarchitecture, 2015.

[34] A. Jaleel, “Memory characterization of workloads
using instrumentation-driven simulation,” Web Copy:
http://www.glue.umd.edu/ajaleel/workload, 2010.

[35] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a warehouse-
scale computer,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on, pp. 158–
169, IEEE, 2015.

[36] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook
of Markov chain Monte Carlo. CRC press, 2011.

[37] A. Gelman and D. B. Rubin, “Inference from iterative
simulation using multiple sequences,” Statistical science,
pp. 457–472, 1992.

[38] J. R. Hershey and P. A. Olsen, “Approximating the Kullback
Leibler divergence between Gaussian mixture models,” in
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, vol. 4, pp. IV–317, IEEE,
2007.

[39] E. M. Jonas, Stochastic architectures for probabilistic com-
putation. PhD thesis, Massachusetts Institute of Technology,
2014.

[40] M. Faix, R. Laurent, P. Bessière, E. Mazer, and J. Droulez,
“Design of stochastic machines dedicated to approximate
Bayesian inferences,” IEEE Transactions on Emerging Topics
in Computing, 2016.

[41] D. Maclaurin and R. P. Adams, “Firefly Monte Carlo: Exact
MCMC with subsets of data,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[42] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and
H. Neven, “Bayesian sampling using stochastic gradient
thermostats,” in Advances in neural information processing
systems, pp. 3203–3211, 2014.

[43] M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran, “Speeding
up MCMC by efficient data subsampling,” Journal of the
American Statistical Association, no. just-accepted, pp. 1–35,
2018.

[44] R. Salakhutdinov, J. Tenenbaum, and A. Torralba, “One-shot
learning with a hierarchical nonparametric Bayesian model,” in
Proceedings of ICML Workshop on Unsupervised and Transfer
Learning, pp. 195–206, 2012.

[45] T. L. Griffiths, M. Steyvers, and J. B. Tenenbaum, “Topics
in semantic representation,” Psychological review, vol. 114,
no. 2, p. 211, 2007.

[46] F. Xu and J. B. Tenenbaum, “Word learning as Bayesian
inference,” Psychological review, vol. 114, no. 2, p. 245, 2007.

[47] K. Ellis, A. Solar-Lezama, and J. Tenenbaum, “Unsupervised
learning by program synthesis,” in Advances in Neural
Information Processing Systems, pp. 973–981, 2015.

[48] Y. Pu, Z. Miranda, A. Solar-Lezama, and L. Kaelbling,
“Selecting representative examples for program synthesis,” in
International Conference on Machine Learning, pp. 4158–
4167, 2018.

[49] C. Bates, P. Battaglia, I. Yildirim, and J. B. Tenenbaum, “Hu-
mans predict liquid dynamics using probabilistic simulation,”
in CogSci, 2015.

[50] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and
A. Tacchetti, “Visual interaction networks: Learning a physics
simulator from video,” in Advances in Neural Information
Processing Systems, pp. 4539–4547, 2017.

[51] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian networks: The combination of knowledge and
statistical data,” Machine learning, vol. 20, no. 3, pp. 197–243,
1995.

[52] C. Kemp and J. B. Tenenbaum, “The discovery of structural
form,” Proceedings of the National Academy of Sciences,
vol. 105, no. 31, pp. 10687–10692, 2008.

[53] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman,
“How to grow a mind: Statistics, structure, and abstraction,”
science, vol. 331, no. 6022, pp. 1279–1285, 2011.

[54] R. M. Neal, Bayesian learning for neural networks, vol. 118.
Springer Science & Business Media, 2012.

[55] V. K. Mansinghka, Natively probabilistic computation. PhD
thesis, Massachusetts Institute of Technology, 2009.

[56] M. J. Wainwright and M. I. Jordan, “Graphical models,
exponential families, and variational inference,” Foundations
and Trends R© in Machine Learning, vol. 1, no. 1–2, pp. 1–305,
2008.

[57] R. Canillas, R. Laurent, M. Faix, D. Vaufreydaz, and E. Mazer,
“Autonomous robot controller using bitwise Gibbs sampling,”
in The 15th IEEE International Conference on Cognitive
Informatics and Cognitive Computing. IEEE, 2016.

[58] A. Coninx, P. Bessière, and J. Droulez, “Quick and energy-
efficient Bayesian computing of binocular disparity using
stochastic digital signals,” International Journal of Approxi-
mate Reasoning, vol. 83, pp. 400–412, 2017.

[59] L. Zheng, O. Mengshoel, and J. Chong, “Belief propaga-
tion by message passing in junction trees: Computing each
message faster using GPU parallelization,” arXiv preprint
arXiv:1202.3777, 2012.

[60] J. Ferreira, P. Lanillos, and J. Dias, “Fast exact Bayesian
inference for high-dimensional models,” in Workshop on
Unconventional computing for Bayesian inference (UCBI),
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

[61] Y. Wang, W. Qian, S. Zhang, X. Liang, and B. Yuan, “A
learning algorithm for Bayesian networks and its efficient
implementation on GPUs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 1, pp. 17–30, 2016.

[62] V. K. Namasivayam and V. K. Prasanna, “Scalable parallel
implementation of exact inference in Bayesian networks,” in
Parallel and Distributed Systems, 2006. ICPADS 2006. 12th
International Conference on, vol. 1, pp. 8–pp, IEEE, 2006.

[63] Y. Xia, Exploration of parallelism for probabilistic graphical
models. University of Southern California, 2010.

[64] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian,
M. Pedram, and Y. Wang, “VIBNN: Hardware acceleration
of Bayesian neural networks,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 476–488,
ACM, 2018.

[65] G. G. Ko and R. A. Rutenbar, “A case study of machine
learning hardware: Real-time source separation using Markov
Random fields via sampling-based inference,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2477–2481, March 2017.

[66] G. G. Ko and R. A. Rutenbar, “Real-time and low-power
streaming source separation using Markov Random field,”
ACM Journal on Emerging Technologies in Computing Systems,
vol. 14, pp. 17:1–17:22, May 2018.

[67] S. Wang, X. Zhang, Y. Li, R. Bashizade, S. Yang, C. Dwyer,
and A. R. Lebeck, “Accelerating Markov random field in-
ference using molecular optical Gibbs sampling units,” in

188

Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 558–569, IEEE Press, 2016.

[68] A. Pfeffer, Practical Probabilistic Programming. Manning
Publications Co., 2016.

[69] S. Hershey, J. Bernstein, B. Bradley, A. Schweitzer, N. Stein,
T. Weber, and B. Vigoda, “Accelerating inference: towards a
full language, compiler and hardware stack,” arXiv preprint
arXiv:1212.2991, 2012.

[70] L. Li and S. J. Russell, “The blog language reference,”
tech. rep., Technical Report UCB/EECS-2013-51, EECS
Department, University of California, Berkeley, 2013.

[71] S. S. J. Wang and M. P. Wand, “Using Infer.NET for statistical
analyses,” The American Statistician, vol. 65, no. 2, pp. 115–
126, 2011.

[72] “TensorFlow probability,” 2018. https://www.tensorflow.org/
probability/.

[73] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang,
and D. M. Blei, “Edward: A library for probabilistic modeling,
inference, and criticism,” arXiv preprint arXiv:1610.09787,
2016.

[74] “Uber AI labs open sources Pyro, a deep probabilistic
programming language,” 2017. http://eng.uber.com/pyro/.

[75] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1–17, 2006.

[76] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks,
“Machsuite: Benchmarks for accelerator design and customized
architectures,” in Workload Characterization (IISWC), 2014
IEEE International Symposium on, pp. 110–119, IEEE, 2014.

[77] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite
for chip-multiprocessors,” in Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, June
2009.

[78] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks,
“Fathom: reference workloads for modern deep learning
methods,” in Workload Characterization (IISWC), 2016 IEEE
International Symposium on, pp. 1–10, IEEE, 2016.

[79] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego
vision benchmark suite,” in Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on, pp. 55–64,
IEEE, 2009.

[80] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau,
S. Garcia, and M. B. Taylor, “CortexSuite: A synthetic brain
benchmark suite,” in Workload Characterization (IISWC),
2014 IEEE International Symposium on, pp. 76–79, IEEE,
2014.

[81] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient
and QoS-aware cluster management,” in ACM SIGPLAN
Notices, vol. 49, pp. 127–144, ACM, 2014.

189

