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Predicting New Workload or CPU Performance
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�e marketplace for general-purpose microprocessors o�ers hundreds of functionally similar models,
di�ering by traits like frequency, core count, cache size, memory bandwidth, and power consumption. �eir
performance depends not only on microarchitecture, but also on the nature of the workloads being executed.
Given a set of intended workloads, the consumer needs both performance and price information to make
rational buying decisions. Many benchmark suites have been developed to measure processor performance,
and their results for large collections of CPUs are o�en publicly available. However, repositories of benchmark
results are not always helpful when consumers need performance data for new processors or new workloads.
Moreover, the aggregate scores for benchmark suites designed to cover a broad spectrum of workload types
can be misleading. To address these problems, we have developed a deep neural network (DNN) model, and
we have used it to learn the relationship between the speci�cations of Intel CPUs and their performance on
the SPEC CPU2006 and Geekbench 3 benchmark suites. We show that we can generate useful predictions
for new processors and new workloads. We also cross-predict the two benchmark suites and compare their
performance scores. �e results quantify the self-similarity of these suites for the �rst time in the literature.
�is work should discourage consumers from basing purchasing decisions exclusively on Geekbench 3, and it
should encourage academics to evaluate research using more diverse workloads than the SPEC CPU suites
alone.
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1 INTRODUCTION
Computer hardware evolves rapidly. In 2015 alone, Intel released over 200 CPU SKUs.1 �e SKUs
have di�erent characteristics like frequency, cache size, memory bandwidth, and core count. Be�er
con�gurations usually cost more. �e performance of a microprocessor is not solely a function of
its microarchitecture; it depends critically on the nature of the workloads running on it. �us both
CPU microarchitecture and workloads need to be taken into account when quantifying actual CPU
performance. Consumers can then estimate whether investing in a costly con�guration helps to
meet their particular goals.
1Stock Keeping Unit. In this paper, a SKU is a CPU with a distinct processor number.
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To help study processor performance, a variety of benchmark suites have been developed. For
the more popular suites, such as Geekbench, SPEC CPU, and Passmark, sizable repositories of
performance data have been collected, allowing the public to compare the behaviors of known
con�gurations on standard workloads. However, there are some issues in using these repositories.
�e �rst is that consumers need to wait for comprehensive benchmark results of new processors to
be contributed to the public repositories. �e second issue is that for new workloads, consumers
have to test a large number of possible con�gurations to �nd the most e�ective hardware. Daunted
by this challenge, some consumers rely blindly on aggregate CPU scores in benchmark repositories.

To resolve these issues, we use statistical methods and machine learning techniques to analyze
data from the SPEC CPU2006 and Geekbench 3 repositories.2 SPEC CPU2006 is widely reported
in academic studies. Geekbench 3 is used by many consumers to make purchasing decisions. We
use deep neural networks (DNN) to predict the performance of Intel CPUs, and we compare the
DNN prediction with that by linear regression (LR). �e DNN predictive model learns interactions
between processor speci�cations for di�erent workloads, sharpening the usefulness of benchmark
data repositories.

�is paper makes the following contributions:
• We use DNN to predict the performance of SPEC and Geekbench workloads on new CPU

SKUs. (�e mean error is 5% for SPEC and 11% for Geekbench.) We show that DNN is more
accurate than traditional LR.
• With the same accuracy, we show that the performance of new workloads on just 10 SKUs
can predict their performance on other SKUs.
• For the �rst time in the literature, we quantify the self-similarity of these widely used

suites, by using DNN to cross-predict the results between the suites (with 25.9% and 14.9%
mean error when predicting SPEC and Geekbench, respectively), and by comparing their
CPU rankings (which are inconsistent, with footrule distance as high as 0.59).

�e rest of the paper is organized as follows. Section 2 gives our analysis of Intel processors in
terms of SKU speci�cations and SPEC performance. Section 3 describes our methodology. Section 4
summarizes our three case studies. Section 5 compares our prediction accuracy on those case
studies. Section 6 compares the SKU rankings in the three cases. Section 7 summarizes related
work and compares it with our own. Section 8 presents our conclusions.

2 INTEL PROCESSOR STATISTICS
In this section, we present some statistical facts about Intel processors, SPEC performance for the
Intel SKUs, and the SKUs’ microarchitectures and types in our SPEC and Geekbench datasets. We
show the large performance variations and a rich variety of SKUs in our datasets.

We construct our Intel processor speci�cation dataset from h�p://ark.intel.com, where Intel pub-
lishes the speci�cations of all its processors. We collect speci�cations including microarchitecture,
launch year, number of cores, base frequency, cache size, power, and memory type. Figure 1 shows
the release years of Intel microarchitectures. �e size of a bubble corresponds to the number of
SKUs released in the corresponding year. �e �gure contains 17 microarchitectures that Intel has
released since 1993.
Intel has a “Tick-Tock” model for microarchitecture code names. A tick represents a shrinking

of the technology and a tock represents a new microarchitecture. In Figure 1, for example, West-
mere and Sandy Bridge have 32nm feature size, and Sandy Bridge and Ivy Bridge have the same
microarchitecture. Every year, there is expected to be a tick or tock. Starting in 2014, however,
Intel decided to add a “refresh” cycle, to update the current microarchitecture. �at is why for 2014
2�e datasets in this paper are available at h�ps://github.com/Emma926/cpu selection.git.
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Fig. 1. The number of SKUs released by Intel for 17 microarchitectures between 1993 and 2016.
Bubble size indicates the number of SKUs. Architectures include x86, Itanium, and Atom. (Data
from h�p://ark.intel.com.)

in Figure 1 there are only a few Broadwell SKUs but more Haswell SKUs. A�er 2016, Intel switched
their model to a three element cycle known as “Process-Architecture-Optimization”.
In this paper, we use relative run time as a measure of performance. We take a Sandy Bridge

processor (E3-1230) as the reference machine. We choose E3-1230 because it is common across
datasets. �e relative runtime of a workload is de�ned as

relative runtime =
runtime − runtimer ef

runtimer ef
(1)

where runtimer ef is the runtime of the corresponding workload on the reference machine. For
brevity, this paper will consistently use “performance” to indicate relative run time. �us the scaled
runtime of E3-1230 is 0. In Figure 2, the E3-1230 performance is slightly below the average of all
Sandy Bridge SKUs, so the line is centered on a value greater than 0. Since all results are presented
relative to the same reference processor, the results are una�ected by the particular choice of the
reference.

To show the diverse performance of di�erent SKUs, we take the average SPEC performance on
SKUs, and we gather the SKUs based on their microarchitecture code names. In Figure 2, the dots
show the mean relative run time of the SKUs with the same microarchitecture code name, and
the lengths of the bars show the standard deviations. Longer bars indicate the performance of the
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Fig. 2. Means and standard deviations of SPEC relative run times. Each run time is the average
over all SPEC workloads of performance for a given SKU. The lengths of the bars show that SKUs
with the same microarchitecture have very diverse performance.

SKUs is more diverse. �e SKUs have the same microarchitecture but di�erent frequency, cache
size, memory size, and so on. �ese lead to variations in each bar, and they contribute as much
to performance variation as the microarchitectures themselves. �e bars overlap horizontally. �at
means when selecting SKUs to optimize performance, there can be many choices with di�erent
microarchitectures but similar performance.
�e SKUs in the public repositories are random, depending on users’ submissions. SPEC and

Geekbench have their own setup and compilation instructions. �e setup of each data point is
included in the repositories. We summarize the SKUs in the SPEC and Geekbench datasets in
Figure 3. Our work focuses on performance prediction on the SKUs currently on the market, thus

Fig. 3. SKUbreakdown in the SPEC (top) andGeekbench (bo�om) datasets. Total number of SKUs
is 352 for SPEC and 119 for Geekbench.
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we discard SKUs older than Sandy Bridge. We �rst do preprocessing to aggregate duplicate data.
Before explaining preprocessing, we �rst de�ne a CPU con�guration as a SKU running at a certain
frequency with a certain memory size. In this paper, we say that a con�guration (SKU, frequency,
memory size) determines a workload’s performance. Other factors such as compiler and OS a�ect
performance as well, but we do not consider them in this work. In the repositories, multiple result
submissions may have the same con�guration. We average the data points that have the same
workload and con�guration.

Figure 3 shows the microarchitectures and types of the SKUs in our SPEC and Geekbench datasets.
�ere are 352 SKUs in total for SPEC, and 119 SKUs for Geekbench. In both datasets, we have more
SKUs of Sandy Bridge, Ivy Bridge, and Haswell than Broadwell and Skylake. Figure 3 shows that
we have a fairly rich collection of SKUs.

Users can customize the memory size with a chosen SKU. We refer to a SKU with a certain
memory size as a con�guration. In total, we have 639 con�gurations of 352 SKUs for the SPEC
workloads. To help visualize the performance of SPEC workloads on 639 con�gurations, we �rst
show, in Figure 4, the means and standard deviations of the relative run times of the workloads.
�e blue bars are SPECfp; the red bars, SPECint. SPECint workloads are very similar to each other,
except for 462.libquantum. SPECfp workloads have more diverse means and standard deviations.
�at indicates FP workloads are more diverse in terms of performance on the 639 con�gurations.
�e performance of 462.libquantum is more similar to SPECfp. If clustering the workloads, we
would like to see that they form two clusters, with SPECint and some SPECfp workloads in one
cluster and the other FP workloads, which have quite di�erent means and standard deviations in
Figure 4, in the other cluster.
To visualize them in a two-dimensional space, we construct a matrix with 28 rows (for the 28

SPEC workloads) and 639 columns. Every matrix entry is the relative run time of the workload
on the corresponding SKU con�guration. We then do a principal component analysis (PCA) to
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Fig. 4. Means and standard deviations of SPEC workloads’ relative run times on the SKUs in our
dataset. SPECfp is more diverse than SPECint. 462.libquantum is more similar to SPECfp.
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visualize the matrix. Figure 5 shows the PCA space. We only show two principal components (PCs)
because the �rst and second PCs account for 82% of the variance.
�e closer two workloads are, the more similar their performance scaling across the 639 con-

�gurations. Blue dots are SPECfp and red are SPECint. SPECfp is more spread out than SPECint.
�at means SPECfp workloads are more sensitive to SKU con�guration di�erences, such as mi-
croarchitecture, frequency, and memory size. It is also an indication that it is harder for current
microarchitectures to extract performance from SPECint than FP. SPECint workloads have less
instruction level parallelism and more data dependencies. �is is also observed by Campanoni et
al. [2].
�e points at the bo�om of Figure 5 form two clusters, and the point at the top (481.wrf) is

clearly an outlier. We want to �nd the centroids of the two clusters while leaving 481.wrf alone.
Running a k-means algorithm with three clusters leaves 481.wrf in a cluster by itself. We plot the
two centroids of the other two clusters using stars. 462.libquantum (the red dot at the bo�om le�)
is clustered with SPECfp. �e centroids will be used to explain our results in Section 5.2.

Although Figures 4 and 5 lead to consistent conclusions, they characterize the performance space
di�erently. Figure 4 focuses on the means and standard deviations of the performance data, while
PCA in Figure 5 emphasizes di�erent performance on di�erent SKU con�gurations. �is can be
explained with an example using two workloads (A, B) and three SKU con�gurations. Workload
A’s relative run times are 0.5, 0.7, -0.4, respectively. On the same SKU con�gurations, workload B’s
relative run times are 0.7, -0.4 and 0.5. �e two workloads could look exactly the same in Figure 4,
but PCA would show their di�erence.

Fig. 5. Principal component analysis of SPEC workloads’ performance scaling on 639 configura-
tions of 352 SKUs. The green stars are centroids of two clusters identified by k-means. SPECfp
workloads are more spread out than SPECint. 462.libquantum (red dot at the bo�om le�) is clus-
tered with SPECfp benchmarks. The outlier near the top is 481.wrf.
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3 METHODOLOGY
�e previous section shows a large variation in performance. �us a predictive model can be
helpful. �is section shows the method we use to build a predictive model. We present our features,
data preprocessing, model selection, and metrics (baselines) for evaluating the results.

A naive way tomake a prediction is to use a previous generation to predict its successor. To do this,
one needs the exact con�guration of interest from previous generation, because sometimes other
features are more important than microarchitecture generations, shown in the bars of Figure 2. For
the same reason, using other SKUs in one generation to predict a new SKU in the same generation
is di�cult. We have tried that, and our current predictive models achieve be�er accuracy. We
eventually decide to use machine learning to learn the relations between CPU speci�cations and
performance, to avoid the missing data problem of the naive methods.

3.1 Features
Table 1 summarizes the data in this paper. �e data include features fed to the predictive model,
and the value we predict, the run time. �e features include CPU speci�cations from the Intel CPU
dataset and dynamic workload features from the SPEC and Geekbench datasets.

CPU Speci�cations: �e microarchitecture code names include microarchitecture changes
and technology scaling. Within one microarchitecture generation, the SKUs are di�erent in their
frequencies, last level cache sizes, TDP, and number of cores. We also add the release year as a
feature. �e type of the SKU is also an important feature. Intel categorizes the SKUs as mobile,

Table 1. Data in this paper. The data include CPU specifications (from the Intel processor dataset)
and dynamic workload features (from SPEC and Geekbench datasets), and what we predict (run
time).

Data Description Data Type
Workload �e names of the workloads One hot encode

Microarchitecture Code Name Intel code names Integer encode
Type Server, desktop, mobile, or embedded One hot encode

L3 Cache Size Last level cache size Numerical
Instruction Set Extensions SSE or AVX Integer encode

Memory Type DDR,DDR2,DDR3,DDR4 Integer encode
Memory Channels Number of memory channels Numerical

Max Memory Bandwidth Max memory bandwidth Numerical
ECC Memory Support Whether ECC memory is supported Binary

Base Frequency Nominal frequency Numerical
Turbo Frequency Turbo frequency Numerical

Turbo Boost Technology Whether Turbo Boost is supported Binary
Cores Number of cores Numerical
�reads Number of threads Numerical

Hyper-�reading Whether hyper-threading is supported Binary
TDP �ermal design power Numerical
Year Year of release Numerical

Frequency �e dynamic frequency Numerical
Memory Size �e size of o�-chip memory Numerical
Run Time �e run times of the workloads Numerical

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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desktop, server, and embedded. L2 and L1 caches per core do not change much across SKUs. �us
we only include last level cache sizes.

For discrete data, we do integer encoding and one hot encoding. Integer encoding means mapping
discrete values to integers. Each feature needs only one entry. Discrete names and types usually
obey the order of the assigned integers. One hot encoding uses one feature entry for one discrete
value. It implies nothing more than that the discrete values are di�erent. �e encoding methods
are speci�ed in Table 1. We choose to map the microarchitecture code names, memory types, and
instruction set extensions into consecutive integers, with their natural order. For the SKU types, it
is easier to do one hot encoding. We also distinguish the workloads using one hot encoding. Before
training and testing, numerical and integer data need to be standardized, but one hot encoding
data do not.

Dynamic Workload Features: Every entry in the SPEC and Geekbench datasets contains a
con�guration (SKU, current frequency, memory size), the name of the workload, and performance
(relative run time, which is the value to predict). We then get the CPU speci�cations from the Intel
processor dataset by the SKU processor number. We do not use the scores provided in SPEC and
Geekbench as performance metrics. For SPEC, we use the run time in seconds. For Geekbench, we
assume that the total amount of work is constant for a given workload and we use the inverse of
throughput to estimate run time. Details on the data preprocessing are in Section 3.2.

3.2 Data Preprocessing
�e SPEC2006 repository provides run time in seconds. Geekbench 3 provides throughput, e.g.,
as GB/second. We �rst average the performance of the workloads with the same (CPU SKU,
Frequency, Memory Size) con�guration. Variations of system so�ware such as OS or compiler
are not considered in this work. Geekbench 3 run time is taken to be the inverse of throughput,
assuming that one workload has a constant total amount of work. �e average run time is then
converted into relative run time for the chosen reference machine based on Equation 1. �e
speci�c choice of the reference machine does not a�ect the prediction. �e relative performance
is normalized to have mean 0 and standard deviation 1. �e preprocessing steps are typical of
machine learning experiments [22].

3.3 Model Selection
In this section, we explain our choice of deep neural networks (DNN) and linear regression (LR) for
this work. We then illustrate our approach for tuning DNN topology and the hyperparameters of
DNN and LR.

DeepNeural Networks: Deep neural networks (DNN) have proven successful in many domains,
from regression and classi�cation to game playing. Compared with traditional methods, DNN
excels when data size is large, scales well with more data, and it does not require expertise in
feature engineering. �e advantages of DNN make it a very good �t for the performance prediction
scenario. �us in this paper, we use DNN as our predictive model.
�e topology and hyperparameters are tuned through model selection. To do model selection,

we randomly split the dataset into a training set, a validation set, and a testing set. �e testing
set is the last hold out set, to avoid using all data to do model selection. We start by sweeping
the hyperparameters in all experiments, including the number of layers, the nodes per layer, the
learning rate, the number of training epochs, the activation function, and the optimizer. �e models
are trained with the training set. �e model with the lowest loss on the validation set is selected.
We �nd that the best set of hyperparameters is always the same. �erefore in all experiments

we use a DNN with 3 hidden layers and 100 nodes per layer. �e learning rate is 0.001 over 300
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training epochs. �e activation function is tanh and the optimizer is RMSprop. �us, for example,
the number of weights for predicting SPEC is 50 million. Fortunately, training is o�ine and has a
one-time cost.

Linear Regression: LR has been shown to work well in the CPU performance prediction
literature [20], while DNN is known to be able to explore non-linear interactions between features,
and it has been shown to be more accurate than LR at performance prediction [16, 17]. Unlike
DNNs, LR has interpretable weight parameters. In realistic scenarios, people can choose LR or
DNN based on the parameters, accuracy, and the value of interpretable weights. In order to make
it a fair comparison, we reimplement LR with MAE as the loss function. �at is, the model is
optimized to yield the lowest MAE. Minimizing the MAE entails assuming the noise distribution to
be Laplacian [4]. In our experiments, both DNN and LR have L1 regularization with a weight of
0.01. �ey take exactly the same training sets, testing sets, and features.

Other models: Popular predictive models other than DNN include linear regression (LR),
support vector machines (SVM), k nearest neighbors (kNN), principal component analysis (PCA),
and genetic algorithms (GA). In Section 7, we list studies using some of those models. However
SVM is not suitable for large scale training because of its computational complexity [35]. kNN,
PCA and GA are be�er when there are fewer data points (< 100) and simpler feature relations.
Besides, traditional methods need carefully selected features, and accuracy does not bene�t from
more training data. �erefore we choose to use DNN and compare it with one traditional method,
LR.

3.4 Metrics
Mean Absolute Error: We use mean absolute error (MAE) as the measure of accuracy, rather
than mean squared error (MSE). �e reasons are as follows.

(1) �ere may be outliers and errors in the submi�ed data. With MSE, the optimizer penalizes
the outliers much more than normal data. However, we do not want to over�t the model to
the outliers [22].

(2) If a prediction is x and the MAE of the model is 0.01, the real value of x is very likely to be
x ± 0.01. MSE is not as easy to interpret.

Because the MAE is in a standardized space, we use two baselines to help understand it. We
assume two independent and identically distributed random variables, a and b, from Gaussian
distribution N(0, 1). �e expected distance between a and b is 2√

π
, which is approximately 1.13 [32].

�erefore a prediction with MAE of 0.25 is a very good prediction. Another way to interpret the
MAE is to compare it with the standard deviation of the testing set. A naive way to do prediction is
to always predict the mean of the dataset. �is way, by de�nition the MAE is the standard deviation

MAE =
∑n

i=0 |xi −m |
n

= Standard Deviation (2)

where n is the number of data points,m is the mean of the testing set, and xi is the real value of
predicted performance, a�er normalization. Note that while the whole dataset is normalized to
have mean 0 and standard deviation 1, the testing sets may be in di�erent scales. In the captions of
Figures 6 and 7, we compare the MAEs with the standard deviations of the testing sets, and show
that the MAEs are much smaller. However what we just discussed are naive baselines. �e next
metric can show that our prediction is good enough in realistic scenarios.

Top-k Accuracy: To bring the MAE metric into realistic context, we use the predictive model
to help select SKUs. We predict performance and use that prediction to rank the SKUs.
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We choose top-k accuracy, which measures whether the known best SKU is among the top k
predicted SKUs. It is a popular metric for image classi�cation tasks [13, 19]. Other metrics for
comparing rankings include Pearson correlation, Spearman footrule distance, and Kendall rank
correlation. �ey measure the di�erence between the tested ranking and the expected ranking, by
considering every item in each ranking. Top-k accuracy is a be�er metric for this work, because
users care more about whether the best SKU is in the top k choices, than about how similar one
SKU ranking is to another. In this context, top-k accuracy is more interpretable than the ranking
correlations.
We construct three baselines to compare with our predictive model. Without the predictive

model, it is customary to compare microarchitecture code names (newer is be�er), frequencies
(higher is be�er), and cache sizes (larger is be�er). �us we construct the baselines taking those
factors into consideration. �ough the baselines are simple, this is how most customers make
purchasing decisions.

A Frequency: Rank the SKUs based on frequencies. If frequencies are the same, rank them
with cache sizes.

B Cache: Rank the SKUs based on cache sizes. If cache sizes are the same, rank them with
frequencies.

C Frequency + Cache: Rank the SKUs based on a summation of frequency and cache size
with weights. �e weights are discussed in Section 5.1. If the values are the same, rank
them with microarchitecture code names.

To measure the top-k accuracy, we shu�e our training or testing set, �nd the best SKU in the
testing set using real performance from the datasets, and measure how o�en the best SKU is one of
the top k SKUs as ranked by our predictive model and the baselines.

4 CASE STUDIES OVERVIEW
In this section, we sketch the case studies, including prediction for new SKUs and for newworkloads,
and cross-prediction between suites. We implement our models with Keras (h�ps://keras.io).

4.1 Case 1: Prediction for New SKUs
In this case, we show that we can predict the performance of SPEC and Geekbench workloads
on new SKUs. Using our open-source model, trained with SPEC and Geekbench data for existing
SKUs from online repositories, users can predict Geekbench and SPEC performance on new SKUs
of interest and choose the ones likely to perform the best.
In order to test the model on new SKUs, we adopt repeated random sub-sampling validation,

a widely-used cross-validation method [8]. We hold out several SKUs from the dataset, train the
model with the remaining data, and test the model with the hold out set.

We randomly choose 10 percent of the SKUs from one microarchitecture at a time as our testing
set. We use the rest of the data as our training set. We repeat this process 20 times for every
microarchitecture. We choose 20 repetitions a�er trying 50 and �nding that the results were
statistically consistent. Comparing the MAEs of 20 DNN repetitions versus 50, the maximum
absolute di�erence is 0.005 and the standard deviation di�erence is 0.009. Both are minimal.
�e premise of this case study is that the predictive models are able to learn the performance

function of a workload using the CPU speci�cations in Table 1. Speci�cally, the training set may
contain SKUs with the same microarchitecture as the new SKU, and SKUs with similar features
such as L3 cache, frequency, and memory size, but di�erent microarchitecture. �e predictive
model then predicts the new SKU’s performance as though interpolating the training set.
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Note that the prediction is nontrivial, even if the same microarchitecture or the full feature set
of a di�erent microarchitecture is in the training set. As shown in Figure 2, both microarchitecture
and other SKU features (such as frequency) introduce large variations in performance. Knowing
one of them does not make the prediction easy.

4.2 Case 2: Prediction for NewWorkloads
In this study, we show that a�er measuring performance of a new workload on just a handful of
SKUs, we can train a model to predict the workload’s performance on other SKUs. Armed with such
predictions, consumers can choose the best processor for the workload based on both performance
and price.

To demonstrate the approach, we split our dataset, taking out one workload at a time and treating
it as the new workload. �en we train the model with all the other workloads’ data plus a certain
amount of data from the chosen workload. We perform the experiment separately for SPEC and
Geekbench. We refer to this case as self-prediction of benchmark suites.
�e premise of this and the next case study is that, given the data of a new workload on

several SKUs, the model can �nd workloads with similar performance on those SKUs, and use
the performance of those workloads to predict the new workload’s performance on other SKUs.
�erefore the prediction accuracy should be related to the similarity of the new workload to the
workloads in the training set.

For every workload A, we remove the data for workload A from the overall dataset. We call
the remaining data data rest . We then sample a �xed set of SKUs for workload A as a testing set,
and we refer to the rest of the data for workload A as train pool . We randomly pick n SKUs from
train pool (where n is 1, 5, 10, or 50) and combine their data with data rest to form a training set.
We repeat the process for 20 iterations.

4.3 Case 3: Cross-Prediction Between Suites
�e experiments in case 2 are conducted within each benchmark suite. Case 3 is an extension of
case 2 that we call cross-prediction. We predict one workload in Geekbench using all data for SPEC
plus that collected using several SKUs for the chosen workload. �en we repeat with Geekbench
and SPEC switched.
For every workload A in Geekbench, we split the whole dataset into the data of workload A

and the rest. We then sample a �xed set of SKUs from workload A as a testing set, and we refer to
the remaining data of workload A as train pool . We randomly pick n SKUs from train pool and
combine their data with the SPEC data as a training set. We sweep n over 1, 5, 10, and 50, and we
repeat the process 20 times.

5 PREDICTION ACCURACY
In this section, we show prediction accuracy measured by mean absolute error (MAE) in the case
studies. We show that DNN is more accurate than LR, and case 2 (self-prediction) is more accurate
than case 3 (cross-prediction).

5.1 Case 1: Prediction for New SKUs
Figure 6 compares the MAEs of LR and DNN for SPEC and Geekbench, respectively. �e heights of
the bars represent the average MAEs of the 20 random test sets. �e error bars show one standard
deviation of the MAEs. A smaller error bar indicates that di�erent selections of testing set give
large di�erences in MAEs, therefore the model is more robust to predict di�erent SKUs.
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Fig. 6. Results of predicting the performance of SPEC (top) andGeekbench (bo�om) on newSKUs.
We compare linear regression (LR) and deep neural network (DNN)models. DNN always has lower
mean absolute errors (MAE) than LR. With DNN, the average MAE for SPEC is 5.5% and for Geek-
bench it is 11.2%. The standard deviations of the test sets are all over 20%.

For both SPEC and Geekbench, DNN always has lower MAEs and is less sensitive to the selection
of the test set than LR. �at means the relationships between features and performance are not
simply linear. In Figure 6 (bo�om), LR has a very large MAE and standard deviation when predicting
Geekbench on Broadwell SKUs. �at is because in Figure 3 (bo�om), there are only �ve Broadwell
SKUs, and one is desktop while the others are servers. Using servers to predict desktop performance
leads to large MAEs for LR. Apparently DNN addresses this be�er. To compare the average MAEs
(the last set of bars in Figure 6), LR is 19.9% and DNN is 5.5% for SPEC, and LR is 20% and DNN is
11.2% for Geekbench. DNN is a be�er choice when the data set is large and interactions between
features are complicated.

�e average MAE is 5.5% for SPEC and 11.2% for Geekbench using DNN.�eMAE for Geekbench
is higher than SPEC because Geekbench users are not like SPEC users, who are mostly computer
architects and system engineers, benchmarking on dedicated machines. One can easily install
Geekbench and produce scores on personal devices. Results may be noisy if other applications
are running at the same time, causing contention in computing and memory resources. We
observe larger variance in Geekbench data. We compute the average standard deviation of the
performance for the same workload with the same (SKU, frequency, memory) con�guration. It is
4.4% for Geekbench, and 1.1% for SPEC. �e larger noise from the data makes it harder to predict
Geekbench.
�e accuracy of simulation-based prediction is about 4% [20], which is slightly lower than our

5.5% MAE of SPEC. Compared to simulation-based approach, the extra noise in our approach comes
from the performance variation introduced by compilers and operating systems in the datasets,
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and no architectural features. We use no architectural features which makes the prediction harder,
but it also makes the method easier to apply to any other public datasets, without the need for
tedious simulation.

5.2 Case 2: Prediction for NewWorkloads
In this section, we show the prediction results of case 2. We show that the DNN prediction accuracy
is largely determined by the similarity of the predicted workload to the rest of the benchmark
suite. We quantify the outlierness of a workload and show that it is positively correlated with the
prediction MAE, with a Pearson correlation of 0.69.

Prediction Results: �e results of SPEC are shown in Figure 7 (le�). �e workloads are sorted
based on the MAEs a�er adding 50 SKUs (brown line). (�e line for 5 added SKUs is omi�ed but
the average bar is shown.) �e standard deviations of all the testing sets are larger than 20%, and
our MAEs in all cases are lower than the standard deviation. For 5, 10, and 50 added SKUs, the
MAEs are 5.7%, 5.3%, and 4.7%, respectively. MAE improvements when moving from 10 SKUs to 50
are similar to those when moving from 5 SKUs to 10. Since adding 40 SKUs is more di�cult than
adding 5, we conclude that using 10 SKUs for the new workload is a reasonable choice.
Similarly, the Geekbench prediction results are shown in Figure 7 (right). �e workloads are

sorted and the rightmost workloads are outliers with very high MAEs. �e standard deviations of
Geekbench testing sets are all above 11%. �e outliers’ standard deviations are at least twice their
MAEs. �at means our model shrinks the con�dence interval by at least 50%.
Case 2 is harder than case 1. In case 1, the average MAE is 11%. In case 2, the average MAE is

14.2%, with two obvious outlier workloads (Blackscholes and AES). We conclude that case 2 works
reasonably well, apart from the two outliers. Also, for the same reason as with SPEC, we choose 10
as the proper number of SKUs to use.

Insights on Benchmark Similarity: By studying MAEs across SPEC workloads, we �nd that
the prediction MAE is correlated with the similarity of the predicted workload to the rest of the
benchmark suite. �is observation supports the statement in Section 4.2 that the model �nds similar
workloads based on the data points of the new workload, and it uses the similar workloads to
predict the performance of the new workload on other SKUs.

Fig. 7. The results of case 2. The workloads are sorted by the MAE a�er adding 50 SKUs. The
workloads on the right are outliers. The averageMAEs are shown in the bars on the right. The line
for adding 5 SKUs is omi�ed, but the average bar for that case is shown. The standard deviations
of the testing sets are all over 11%.
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In Figure 7 (le�), a�er adding 50 SKUs it is still relatively hard to predict the workloads on
the right. We call these workloads outliers. �e workload with highest MAE is 481.wrf and it is
also the outlier lying above all other workloads in Figure 5, which shows the workloads’ relative
performance scaling in the varied SKU con�gurations.

Some outliers are well-studied in prior works. Phansalkar et al. show that 436.cactusADM is an
outlier in terms of memory access characteristics in Figure 9 of [24]. However, workload features
collected in prior works are unable to explain why 481.wrf is such an outlier in SKU scaling space,
as shown in Figures 7 and 5. Future work will try to answer that question.

To study the outlierness of the workloads in Figure 7 (le�), we ran a k-means algorithm to split
the workloads into two clusters, cluster1 and cluster2. �eir centroidsC1 andC2 are plo�ed as stars
in Figure 5. We compute the distance of a workload to its cluster’s centroid as

distance = I (x ∈ cluster1)| |x −C1 | |2
+I (x ∈ cluster2)| |x −C2 | |2

(3)

where x stands for the location of the workload in Figure 5 and I yields 1 if its argument is true
and 0 otherwise. �e distance quanti�es the outlierness of a workload.
Figure 8 plots a workload’s MAE a�er 50 added SKUs (y-axis) against its distance (x-axis).

Distance and MAE have a Pearson correlation of 0.6898. We can use distance to identify workloads
with high errors. Workloads with distance higher than 5 have MAEs higher than 10%. �is
correlation explains why the outliers have higher MAEs than others even a�er adding 50 SKUs.

Conclusion: �is case shows that we are able to predict a new workload’s performance by
running it on 10 SKUs. �e accuracy of the prediction depends on the similarity of the workload to
those in the training set. Even if it is very di�erent, our model is still able to shrink the con�dence
interval.

Fig. 8. Correlation of SPECworkloads’ outlierness (distance) withMAE a�er adding 50 SKUs. The
distance of a workload is its distance from the the centroid in its cluster. Centroids are in Figure 5.
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5.3 Case 3: Cross-Prediction Between Suites
Figure 9 shows the results of cross-prediction: using Geekbench to predict SPEC (top) and vice versa
(bo�om). Because the MAEs of the workloads and the outliers are similar to case 2 (self-prediction),
we only show the average MAE bars in this case.

To compare self-prediction and cross-prediction, we �rst compare Figure 9 (top) with the bars in
Figure 7 (le�), both of which predict SPEC workloads. Cross-prediction gives higher MAEs, for
any number of added SKUs. A�er adding 50 SKUs, the average MAE of cross-prediction is 16.9%;
the average MAE of self-prediction is 4.6%. Comparing the predictions of Geekbench in Figure 9
(bo�om) and the bars in Figure 7 (right), a�er adding 50 SKUs the average MAE for cross-prediction
is 12.6% and that for self-prediction is 10%.

Cross-prediction gives consistently higher errors because the workloads in SPEC and Geekbench
are very di�erent, more di�erent than the workloads in either benchmark suite itself. In another
words, the workloads in a benchmark suite are more similar to each other than to workloads outside
of the benchmark suite.

Benchmark suites like SPEC CPU2006 are expected to be diverse and representative of real-world
workloads. However, a benchmark suite is developed for a purpose, and di�erent suites usually
have di�erent purposes. �e purpose itself is the reason why the workloads in the suite are similar.
�e SPEC CPU2006 benchmark suite is intended for computer designers and architects to use for
pre-silicon design analysis. SPEC workloads are drawn from and representative of real workloads.

In contrast, Geekbench is intended to stress a certain part of the hardware. For example, memory
microbenchmarks do a lot of memory streaming operations to study the bandwidth limit of the
hardware system. From this point of view, it is reasonable that SPEC and Geekbench are very
di�erent and the workloads in each suite are more similar.

Conclusion: Cross-prediction is harder than self-prediction. To predict performance for new
workloads, one needs a training set with a very diverse collection of workloads. Benchmark suites
tend to be self-similar, because each serves a speci�c purpose. Even so, cross-prediction is useful,
as shown in the next section.

Geekbench -> SPEC
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Case 3: Mean Absolute Error

DNN + 1 SKU

DNN + 5 SKUs

DNN + 10 SKUs

DNN + 50 SKUs

SPEC -> Geekbench

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Fig. 9. Case 3 is about cross-prediction. SPEC workloads are predicted with the Geekbench
dataset (top). Geekbench workloads are predicted with the SPEC dataset (bo�om). Cross-
prediction has higher errors than self-prediction (case 2).
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Fig. 10. SKU ranking results of case 1. Our DNN model has the highest top-3 accuracy.

6 SKU RANKING COMPARISON
In this section, we use the performance prediction results of the DNN model to rank SKUs. We
then compare the SKU rankings with the baseline metrics described in Section 3.4. �e baselines
represent the customary ways of making purchasing decisions. Our methodology makes SKU
selection more accurate without requiring expertise on workload characterization or computer
architecture speci�cations.

6.1 Case 1: Prediction for New SKUs
In this section, we show that our DNN model outperforms the three baselines in Section 3.4 when
using SPEC and Geekbench to select new SKUs.
�e results of SPEC and Geekbench are shown in Figure 10. For baseline C, a combination of

frequency and cache, we swept 100 combinations of weights. We combined frequency(GHz) ×w
with cache(MB) × (1 −w), and sweptw from 0.01 to 1, with a step size of 0.01. In Figure 10, we use
0.9 × f requency + 0.1 × cache so that the frequency and cache values are in about the same range.
�e top-3 accuracy of baseline C combining frequency and cache is no be�er than A (frequency) or
B (cache).

Frequency is the best metric among the three baselines. �e following subsections show similar
results, therefore we show baseline A and drop the others in the rest of the paper.

Our predictive model outperforms all of the workload-indi�erent baselines. For Geekbench, the
frequency metric achieves accuracy comparable to that of our DNN model. �e Geekbench suite
as a whole is quite frequency-sensitive. �e SPEC suite, on the other hand, is sensitive to neither
frequency nor cache, which suggests that choosing SKUs for complicated workloads requires more
than simply comparing frequency or cache.

Conclusion: When selecting a SKU that optimizes SPEC or Geekbench performance, our
predictive model works be�er than simply comparing frequencies, cache sizes, or a combination
of the two. Selecting a SKU by frequency is be�er than by cache size, and is more successful for
microbenchmarks like Geekbench than for complicated workloads like SPEC.

6.2 Cases 2 and 3: Self- and Cross-Prediction
In this section, we compare the top-k accuracies of cases 2 and 3 and baseline A (frequency). Results
using baselines B and C are consistent with those presented, so we omit them. We show case 2 and
case 3 in the same plots to compare their results. Both cases use 10 additional SKUs for the new
workload. �e results appear in Figure 11.

It is very di�cult to �nd the best SKU for SPEC workloads for cases other than SPEC self-
prediction (case 2). �e top-3 accuracy of case 3 is very small, and that of frequency is 0. We start
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Fig. 11. Based on SPEC (top) and Geekbench (bo�om), compare the SKU rankings by self-
prediction (case 2), cross-prediction (case 3) and the best baseline (Frequency). Self-prediction
performs the best. Frequency is not a reasonable approach to select SKUs for new workloads.

to observe more accuracy from them when we relax the choices to top-7 SKUs. It indicates building
the predictive model is the only reasonable way to �nd good SKUs for SPEC. �e situation can get
worse for the workloads in people’s daily lives such as web browser, Microso� O�ce suite, Adobe
suite, and other customized workloads from individual companies.

Self-prediction has higher accuracies than cross-prediction for most of the workloads, suggesting
self-prediction is easier. �e ranking accuracies further support what has been observed from
the prediction accuracy studies in Figures 7 and 9, and the self-similarity statement in Section 5.3.
Exceptions are AES, Dijkstra, and Stream Scale from Geekbench, which have higher accuracies
when trained with SPEC. Among them AES is the outlier with the highest MAE from the self-
prediction accuracy results in Figure 7 (right). �e results indicate that those three workloads are
more similar to SPEC in terms of selecting the best SKUs.

Self- and cross-prediction are more accurate than frequency. Note that in cases 2 and 3, the test
set is �xed, and the only variation in the 50 iterations is the random additional 10 SKUs from the
new workload, as described in Section 4. �erefore for frequency bars in Figure 11, there is only
one ranking of SKUs to test, and the top-k accuracy is either 0 or 1, depending on whether the
best SKU is ranked top-k or not. By averaging the accuracies for the whole suite, we �nd that
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Fig. 12. Comparison of SKU rankings based on SPEC and Geekbench averages. Points are clus-
tered above the diagonal because Geekbench ranks SKUs lower than SPEC (giving them higher
ranking indexes). The horizontal cluster below shows that Geekbench poorly distinguishes SKUs
with quite di�erent SPEC behavior.

frequency performs the worst. �ough the previous subsection shows the accuracy of frequency to
be comparable to DNN prediction for Geekbench (Figure 10), individual workloads may or may not
be sensitive to frequency. Frequency is not a good way to select SKUs.

Conclusion: SPEC self-prediction is the only reasonable way to �nd the best SKU for SPEC
workloads. Self-prediction is easier than cross-prediction in most cases. Frequency has the lowest
accuracy, so frequency alone should not be the deciding factor when selecting SKUs for new
workloads.

6.3 Benchmark Suite Comparison
In this section, we compare the benchmark suites in terms of SKU ranking. While there is no
prediction involved, it is natural to compare the two benchmark suites a�er comparing the individual
workloads in them.

Geekbench is very popular on computer enthusiast websites, with many articles claiming that
“Geekbench suggests A outperforms B”. Such articles a�ect many consumers’ choices when pur-
chasing computing products. Most people use laptops to run workloads such as web browsers,
Microso�’s O�ce suite, Adobe so�ware, and so on. We describe these as realistic workloads.
Consumers choose CPUs based on Geekbench scores because they assume that Geekbench predicts
the performance of realistic workloads. Here we view SPEC workloads as falling between realistic
workloads and Geekbench in terms of complexity and real-world relevance.

To show how the two suites produce di�erent rankings, we rank the SKUs that SPEC and
Geekbench datasets have in common by averaging each benchmark suite’s performance on each
such SKU. Figure 12 shows the ranking comparison. �e x-axis is the rank based on SPEC and the
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y-axis is the same SKU’s rank based on Geekbench. �e footrule distance between the two rankings
is 0.59. (�e range is from 0 to 1.) If the ranks were consistent on both suites, the points would lie
along the gray line (x = y). We observe two pa�erns in Figure 12. One is the cluster of points above
the gray line; Geekbench ranks those SKUs lower than SPEC (gives them higher ranking indexes).
Another pa�ern is the cluster of points below the gray line and close to the x-axis. SPEC ranks
those SKUs from 0 to 120, while Geekbench ranks them from 0 to around 50. In another words, the
SKUs have very di�erent SPEC performance, but are poorly di�erentiated by Geekbench.

�e Geekbench SKU ranking is not consistent with SPEC rankings. �at means that if an enthu-
siast article says “Geekbench shows that A outperforms B”, SPEC may suggest that B outperforms
A. It is very unlikely that a Geekbench score can give accurate indications for realistic workloads
either. If one buys a CPU con�guration based on its highest Geekbench score, the hardware may
not be the best for running the workloads that he or she runs daily.

�is suggests that people use Geekbench incorrectly. �e aggregate score of a benchmark suite
is misleading. Geekbench is designed to stress �oating point, integer, and memory operations. It
makes more sense to compare the performance of individual microbenchmarks that are relevant to
realistic workloads. If one runs a lot of matrix operations and image processing workloads, such as
MATLAB and Adobe Photoshop, the �oating point benchmarks in Geekbench are very helpful.

Conclusion: Aggregate Geekbench scores are misleading. Benchmarking relevant individual
Geekbench workloads makes more sense. SKU rankings by Geekbench are inconsistent with
rankings by SPEC, and probably also with rankings for realistic workloads. For a non-expert
consumer, the best way is to take all datasets available, plus the new workload’s performance on
10 SKUs, and train a predictive model as in cases 2 and 3.

7 RELATEDWORK
7.1 Performance Prediction
For performance prediction, our work uses deep neural networks (DNNs), regarded as the state-of-
the-art machine learning algorithm. It has been proven to be able to simulate any function [5].
Unlike simulation-based performance prediction [16, 17, 20, 28], our approach does not use

microarchitecture features such as instruction issue width, read write bu�er size, or number of
pipeline stages. We use only the CPU speci�cations that manufacturers provide. Microarchitecture
features would make performance prediction easier and more accurate, but our approach is more
helpful for consumers choosing CPUs. Even when manufacturers describe microarchitecture
features, consumers need expert knowledge to make use of such information.

Performance prediction is a well-studied �eld. �ere are mechanistic models [3, 10–12, 18, 33, 34],
empirical models [9, 21, 31], and machine learning models [1, 36]. Zheng et al. used performance
counters and a ”stochastic dynamic coupling” heuristic for aligning host and target execution
samples to estimate performance using only binary code [37]. In contrast, we focus on CPU SKU
selection for consumers, rather than performance prediction for hardware/architecture designers.
Our method does not use performance counters or architecture features other than those accessible
to all consumers.
Piccart et al. use data transposition to rank commercial machines [27]. �eir work exploits

machine similarity rather than workload similarity. Our work has di�erent objectives and uses
di�erent metrics. It exploits workload similarity and benchmark suite self-similarity to help users
pick the best CPU SKU for their needs.
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7.2 Workload Characterization
Phansalkar et al. develop a series of SPEC workload characterizations [23–26]. However they
do not focus on workload performance scaling as we do, so their classi�cation results are not
consistent with ours. Our approach provides an orthogonal way to characterize workloads.

Some researchers use static workload features to predict performance. Shelepov et al. use spatial
locality, cache size, and frequency to predict speedup on a variety of processors [29, 30]. Hoste
et al. collect microarchitecture-independent features to classify workload performance [14, 15].
Delimitrou et al. study workload characteristics for cloud scheduling [6, 7]. In our work, we predict
a new workload’s performance on hundreds of CPU SKUs. �e number of workloads is much
smaller than the number of hardware platforms. Because the workload features are static, we argue
that it is hard to use static features in this work.

8 CONCLUSION
To help customers select proper CPU SKUs and overcome the limitations of public benchmark
datasets, we have presented statistical and predictive analysis of workload performance, with data
collected from the SPEC CPU and Geekbench 3 suites and Intel processor speci�cations.
We demonstrated performance prediction for new SKUs and new workloads with deep neural

networks (DNNs). For new SKUs, the accuracy is 5% (SPEC) and 11% (Geekbench) mean absolute
error (MAE). With the same accuracy, we �nd that we can predict a new workload’s performance by
running it on 10 SKUS. We compared our predictive methods against workload-indi�erent metrics
for selecting processors. Our predictive model is the only approach that achieves reasonable
accuracy in all three case studies. Notably, workload-indi�erent methods of SKU selection do not
work for new workloads.

For the �rst time in the literature, we showed benchmark suite self-similarity quantitatively by
cross-prediction and comparison of SPEC and Geekbench SKU rankings. �e accuracy of cross-
prediction is lower than that for prediction within the suites because they are so di�erent: 25.9%
mean error to predict SPEC and 14.2% to predict Geekbench.
Rankings based on average Geekbench are inconsistent with those based on average SPEC.

Geekbench rankings do not imply SPEC rankings. It is also hard to draw any conclusions about
realistic workloads from a benchmark suite. We suggest studying the Geekbench or SPECworkloads
of interest, rather than relying on aggregate scores.
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