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Abstract—The wide application of omics research has produced a burst of biological data in recent years, which has in turn increased

the need to infer biological networks from data. Learning biological networks from experimental data can help detect and analyze

aberrant signaling pathways, which can be used in diagnosis of diseases at an early stage. Most networks can be modeled as Bayesian

networks (BNs). However, because of its combinatorial nature, computational learning of dependent relationships underlying complex

networks is NP-complete. To reduce the complexity, researchers have proposed to use Markov chain Monte Carlo (MCMC) methods to

sample the solution space. MCMCmethods guarantee convergence and traversability. However, MCMC is not scalable for networks

with more than 40 nodes because of the computational complexity. In this work, we optimize an MCMC-based learning algorithm and

implement it on a general-purpose graphics processing unit (GPGPU). We achieve a 2:46� speedup by optimizing the algorithm and an

additional 58-fold acceleration by implementing it on a GPU. In total, we speed up the algorithm by 143�. As a result, we can apply this

system to networks with up to 125 nodes, a size that is of interest to many biologists. Furthermore, we add artificial interventions to the

scores in order to incorporate prior knowledge of interactions into the Bayesian inference, which increases the accuracy of the results.

Our system provides biologists with a more computational efficient tool at a lower cost than previous works.

Index Terms—Bayesian networks, GPU, MCMC, priors, parallel computing

Ç

1 INTRODUCTION

RECENTLY, a vast amount of microarray data has become
available for public use, such as ArrayExpress [1],

GENEVESTIGATOR [2], and NASCArrays [3]. The wide
application of omics research has promoted the growth of
computational biology, a field using the combination of the-
oretical methods, data analysis techniques, and simulations
to study biological systems. Experiments have been carried
out at whole-genome scale. Data from various resources,
such as transcriptomics, proteomics, genomics, and meta-
bolics, need to be integrated to learn connections among tar-
geted entities. Analyzing the connections, for example, in
signaling transduction networks, is helpful to detect dis-
eases caused by abnormal interactions. The study con-
ducted by Irish et al. showed that slight differences in the
connections of signaling transduction networks are corre-
lated with different clinical results [4]. Among the various
modeling methods, the Bayesian network (BN) is regarded
as one of the most effective models for constructing biologi-
cal networks. In the BN model, target entities (such as
genes, proteins, and molecules) are modeled as nodes, and
interactions between those entities are modeled as edges.

However, the problem of learning networks from data
has been proven to be NP-complete [5]. Therefore, in prac-
tice, Markov chain Monte Carlo (MCMC) methods, which
are randomized algorithms, have been used to reduce the
complexity [6]. However, those algorithms are still too time-
consuming. In order to make it practical for biological use,
we propose two major algorithmic improvements. Our
experiment results showed that the resulting algorithm is
2.46-fold faster than the basic algorithm. We also propose a
way of adding artificial interventions to take prior knowl-
edge for edges into consideration to increase the accuracy of
the learning results.

Besides algorithmic improvements, in this work, we also
apply graphics processing units (GPUs) to further accelerate
the BN learning algorithm. GPUs are known to be highly
efficient for massively parallel computation, which is a
good fit for our BN learning algorithm, since the algorithm
is inherently parallelizable. The combination of our algorith-
mic improvements and the GPU implementation allows us
to learn graphs of up to 125 nodes on a single compute node
and achieve 143� speedup. The result is better than any
other published GPU implementations of a BN learning
algorithm. In the field of biology, many laboratories need to
process networks with fewer than 100 nodes. For example,
studies conducted by Ao et al. showed that the sizes of
endogenous networks are usually within 100 nodes [14],
[15]. Thus, our proposed approach provides a powerful tool
for these studies.

In summary, we have made the following contributions
in this work:

� We make two major improvements to the MCMC-
based BN learning algorithm. They are:
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1) a procedure that maps a k-combination to an
integer and a reverse procedure that maps an
integer to a k-combination. The former proce-
dure is used in fetching the “scores” from the
memory for evaluating different BNs. It replaces
hashing that was used in the previous work [8].
Since the major work of the algorithm is comput-
ing the index corresponding to a k-combination
in order to fetch the score for that k-combination,
the function that calculates the index for a k-com-
bination is called extensively. Our proposed
approach gives us a much faster way to obtain
index than hashing. The latter procedure is used
in the GPU implementation to assign tasks to dif-
ferent threads. The procedure makes it conve-
nient to distribute tasks to GPU threads evenly
and hence, improves the performance.

2) A new scoring function that is easy to compute.
In traditional approaches, scoring procedure is
sum-based and calculated in the logarithmic
space, which requires a number of time-consum-
ing logarithmic and exponential operations. Our
new scoring is max-based, which only requires
addition and comparison in the logarithmic
space, greatly simplifying the computation.

� We implement our algorithm efficiently on a GPU by
exploiting the parallelism of our algorithm.

� We add artificial interventions in order to incorpo-
rate prior knowledge of interactions into the
Bayesian inference.

The remainder of the paper is organized as follows. In
Section 2, we discuss some related works. In Section 3, we
give the background on the problem of learning BNs. In
Section 4, we describe our algorithms that map between an
integer and a k-combination, which are important in the opti-
mization and implementation of the BN learning algorithm.
In Section 5, we describe the optimized learning algorithm.
In Section 6, we describe our method for adding artificial
interventions. In Section 7, we discuss the implementation of
the proposed algorithm on a GPU. In Section 8, we show the
experimental results of the proposed system for learning
BNs. In Section 9, we conclude the paper.

2 RELATED WORKS

In order to accelerate the learning of BNs, novel computa-
tional platforms such as field-programmable gate array
(FPGA), computing clusters, and GPUs have been applied
[7], [8], [9]. Linderman et al. implemented an MCMC algo-
rithm on a GPU and achieved a 7.5� speedup over the
implementation on a general-purpose processor (GPP) [8].
Asadi et al. implemented a similar algorithm on a multi-
FPGA system and achieved more than 10,000� speedup on
the scoring subroutine [7]. Tamada et al. proposed a novel
algorithm to calculate the probability of edges by sampling
subnetworks [10]. With their supercomputing system of 64
compute nodes, they could learn networks of up to 10,540
nodes within 301 seconds. Tamada et al. also presented a
parallel algorithm which makes it possible to run their algo-
rithm in parallel using 256 processors [11]. Nikolova et al.
proposed a heuristic algorithm, which was able to handle a

500-node network within 107 seconds using 1,024 computa-
tion cores [12]. Nikolova et al. also proposed and extended
their exact learning algorithm on an IBM Blue Gene/P sys-
tem and an AMD Opteron InfiniBand cluster [13].

Our baseline implementation adopts the techniques
described by Linderman et al. [8], which is the state-of-the-art
MCMC-based BN learning algorithm and an improvement
over a classic algorithm described by Heckerman et al. [17].
Compared with the work of Linderman et al. [8], we further
optimize the algorithm by replacing its hashing-based
method for finding index by a direct mapping method and
replacing the sum-based scoring function by a max-based
scoring function. As a result, our improved algorithm ismuch
faster and can be applied to larger networks than the algo-
rithm in [8], which will be demonstrated by our experimental
results in Section 8. Comparedwith the work of Tamada et al.
[10] and thework ofNikolova et al. [12], our order-based sam-
pling is more theoretically robust, since it can avoid being
trapped in a local optimum thanks to traversibility of MCMC.
Unlike the systems of Tamada et al. [10] and Nikolova et al.
[12], we do not focus on extremely large networks. Our work
is better suited for laboratories with limited computing
resources that are interested in learning smaller networks.

3 BACKGROUND

3.1 Bayesian Network

A Bayesian network G is a probabilistic graphical model
representing a set of random variables and their conditional
dependencies by a directed acyclic graph (DAG). The par-
ent set pi of a given node vi is the set of nodes which have a
directed edge to vi. Each node vi is associated with a proba-
bility distribution conditioned on its parent set, P ðvijpiÞ.
The joint probability distribution of all the random variables
in a Bayesian network can be written as a product of the
conditional distributions for all the nodes:

P ðv1; v2; . . . ; vnÞ ¼
Yn
i¼1

P ðvijpiÞ: (1)

In this work, we focus on BNs composed of binary ran-
dom variables, which has two states. Our methods can also
be applied to BNs with multiple states. The only difference
between learning two-state network and learning multiple-
state network lies in the preprocessing subroutine. The
problem here is to learn the BN structure from a set of
experimental data.

3.2 Markov Chain Monte Carlo

BN learning is an NP-complete problem. Table 1 shows the
total number of possible graphs and the total number of
topological orders for different numbers of nodes. Note that
all the topological orders for a given number of nodes corre-
spond to all the permutations on those nodes. Thus, given n
nodes, the number of topological orders is n!. The table
shows that the number of possible graphs grows super-
exponentially with the number of nodes. To reduce the com-
plexity, greedy search [16], [17], [18], constrain-based meth-
ods [19], [20] and heuristic search [21], [22] are proposed.
Compared with sampling methods, those approaches easily
get trapped in local optimal solutions.
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Markov Chain Monte Carlo, a type of theoretically
robust sampling method [23], is recently applied to effi-
ciently solve the problem of learning BNs [24]. MCMC
method is typically used to draw samples from a complex
probability distribution. It achieves this by constructing a
proper Markov chain such that its steady state distribution
is equivalent to the probability distribution to be sampled.
The result improves as more samples are drawn from the
Markov chain.

One MCMC-based method proposed to solve the prob-
lem of learning BNs is the graph sampling, which explores
the huge graph space for the best graph. Another method is
to sample the order space, which consists of all topological
orders for DAGs, and return the best order. This approach
explores a much smaller space than the graph space. There
is also order-graph sampling, which samples graphs for a
sampled order [6]. In this work, we choose to optimize the
approach that samples the order space because it requires
fewer steps to converge than other methods and provides
more opportunities to be paralleled on GPUs. Note that
each DAG has at least one topological order, which we
denote as �.

3.3 Scoring Metric

Learning BNs aims at finding a graph structure which best
explains the data. We can measure each BN structure with a
Bayesian scoring metric, which is defined as [17]:

P ðG;DÞ ¼
Yn
i¼1

P ðvi;pi;DÞ; (2)

where D denotes the experimental data. P ðvi;pi;DÞ is
known as the local probability and can be calculated as

P ðvi;pi;DÞ ¼ g jpij
Yri
k¼1

GðaikÞ
Gðaik þNikÞ

Yjvi j
j¼1

GðNijk þ aijkÞ
GðaijkÞ ; (3)

where g serves as a penalty for complex structures [6], a is
the hyperparameter for prior of Bayesian Dirichlet score, ri
is the number of different states of the parents set pi, jvij is
the number of possible states of the random variable vi, Nik

and Nijk are obtained from the experimental data D [17],
and G is the gamma function [25].

Since the local probability calculated by Equation (3) is
very small, we perform the computation in the log-space,
i.e., instead of calculating P ðG;DÞ and P ðvi;pi;DÞ, we com-
pute logP ðG;DÞ and log P ðvi;pi;DÞ. We refer to log P ðG;DÞ

as the score of a BN and log P ðvi;pi;DÞ as the local score. For
simplicity, we also denote log P ðvi;pi;DÞ as lsði;piÞ.

When scoring an order �, the posterior probability of
� given the experimental data D, P ð� jDÞ, has been shown
to be proportional to the sum of all local probabilities
P ðvi;pi;DÞ over all the graphs G that are consistent with the
topological order � [24]:

P ð� jDÞ /
X
G2�

Yn
i¼1

P ðvi;pi;DÞ;

which can be further efficiently calculated as

P ð� jDÞ /
X
G2�

Yn
i¼1

P ðvi;pi;DÞ ¼
Yn
i¼1

X
pi2P�

P ðvi;pi;DÞ; (4)

where P� is the set of all parent sets that are consistent with
the order �.

In order to reduce the overall complexity, we limit the
maximal size of the parent set for a node to a constant s .
In other words, we only consider graphs such that for
each node vi in the graph, it has at most s parents. This
strategy was proposed by de Campos and Ji [26]. It is
very important because it reduces the complexity of the
scoring function from exponential to polynomial. Please
note that both our serial (including baseline and opti-
mized implementations) and parallel implementations are
based on this constraint.

4 BIJECTION BETWEEN INTEGERS AND

k-COMBINATIONS

In this section, we illustrate two mapping algorithms that
are important subroutines of our efficient implementation
of the BN learning algorithm. The first algorithm maps a
k-combination to a positive integer and the second one
maps a positive integer to a k-combination. Here, a k-combi-
nation means a subset of k elements from a given set
S ¼ f1; 2; . . . ; ng. For example, the set f1; 2; 4g is a three-
combination of the set S. Since a k-combination does not
contain duplicates and further, we could sort the elements
in a k-combination in ascending order, therefore, for ease of
exposition, we will represent a k-combination by a vector
ða1; a2; . . . ; akÞ such that 1 � a1 < a2 < � � � < ak � n.

4.1 Mapping a k-Combination to an Integer

In our BN learning algorithm, each local score lsði;piÞ is
used many times. To save the time of computing each local
score (which requires calculation through Equation (3)), we
pre-compute all the local scores and store them in a table,
which we refer to as a local score table. Note that each local
score lsði;piÞ is keyed by the combination of a node i and a
parent set pi. Previous investigators used a hash function to
assign a random index based on the node and the parent

set. However, we observed that we can sort all the n
k

� �
k-combinations of the set S ¼ f1; 2; . . . ; ng in lexicographic
order. Therefore, we do not need to store the local score for
each node i and each parent set pi in a random index given
by the hash function. Instead, we can store the score in a
position corresponding to the index of that k-combination
in the lexicographic order of all k-combinations.

TABLE 1
The Number of Graphs and the Number of Topological

Orders versus Different Numbers of Nodes

# of nodes # of graphs # of orders

4 453 24
5 29,281 120
10 4.7 � 1017 3.6 � 106

20 2.34 � 1072 2.43 � 1018

30 2.71 � 10158 2.65 � 1032

40 1.12 � 10276 8.16 � 1047
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Algorithm 1. Procedure findIndex: it returns the index
of a given k-combination ða1; . . . ; akÞ with 1 � a1 < � � � <
ak � n in the lexicographic order of all k-combinations of
the set S ¼ f1; . . . ; ng.
1: {Given two integers n and k and a vector ða1; . . . ; akÞ denot-

ing a k-combination, where 1 � a1 < � � � < ak � n.}
2: index ( 1; a0 ( 0;
3: for i ¼ 1 to k do
4: for j ¼ ai�1 þ 1 to ai � 1 do
5: index ( indexþ n� j

k� i

� �
;

6: end for
7: end for
8: return index;

We proposed a procedure findIndex to obtain the lexico-
graphic order of a k-combination, which is shown in Algo-
rithm 1. The basic idea to get the index of a k-combination is
to count the number of k-combinations that are before the
current one. We use an example to illustrate the algorithm.
Suppose that we want to get the index of the three-combina-
tion ð3; 7; 10Þ of the set S ¼ f1; 2; . . . ; 12g. The combinations
that are before ð3; 7; 10Þ in the lexicographic order can be
divided into three categories:

(1) ðb1; b2; b3Þ, with 1 � b1 � 2 and b1 < b2 < b3 � 12;
(2) ð3; b2; b3Þ, with 4 � b2 � 6 and b2 < b3 � 12;
(3) ð3; 7; b3Þ, with 7 < b3 � 9.

To count the number of combinations belonging to Cate-
gory 1, we further divide them into two sub-categories:
ð1; b2; b3Þ with 1 < b2 < b3 � 12 and ð2; b2; b3Þ with

2 < b2 < b3 � 12. The former has 11
2

� � ¼ 55 combinations

and the latter has 10
2

� � ¼ 45 combinations. Similarly, we

divide Category 2 into three sub-categories: ð3; 4; b3Þ with
4 < b3 � 12, ð3; 5; b3Þ with 5 < b3 � 12, and ð3; 6; b3Þ with
6 < b3 � 12. The numbers of combinations contained in

these three sub-categories are 8
1

� � ¼ 8, 7
1

� � ¼ 7, and 6
1

� � ¼ 6,

respectively. Finally, we divide Category 3 into two sub-cat-
egories: ð3; 6; 8Þ and ð3; 6; 9Þ. The numbers of combinations
contained in these two sub-categories are both 1. Then, the
number of combinations before the three-combination
ð3; 7; 10Þ is

55þ 45þ 8þ 7þ 6þ 1þ 1 ¼ 123:

The index of ð3; 7; 10Þ is 124.
In the general situation, we split the set of combinations

before the input combination ða1; . . . ; akÞ into k categories.
Assuming that a0 ¼ 0, the combinations in the ith category
are of the form ða1; a2; . . . ; ai�1; bi; biþ1; . . . ; bkÞ with
ai�1 þ 1 � bi � ai � 1 and bi < biþ1 < � � � < bk � n. Thus, the
number of combinations in the ith category is

Xai�1

j¼ai�1þ1

n� j

k� i

� �
:

The procedure findIndex shown in Algorithm 1 imple-
ments the above idea.

Experimental results demonstrated that using this proce-
dure we can calculate the location for storing the local score
for a given node index i and a parent set pi much faster
than using a hash function.

4.2 Mapping an Integer to a k-Combination

As we will show in Section 7, when we implement the BN
learning algorithm on a GPU, we assign each thread to pro-
cess one of the local scores stored in the memory. In order
to distribute different tasks to different threads, we need to
map each thread ID to a unique parent set. Therefore, we
require a procedure that could map an integer to a k-combi-
nation. We proposed a procedure findComb for this pur-
pose, which is shown in Algorithm 2. Given an integer l, the
procedure returns the lth k-combination according to the
lexicographic order of all k-combinations of the set
S ¼ f1; . . . ; ng, without explicitly counting them one by one.
This procedure can be thought as an inverse function of the
procedure findIndex.

Algorithm 2. Procedure findComb: given an integer l, it
obtains the lth k-combination in the lexicographic order
of all k-combinations of the set S ¼ f1; . . . ; ng.
1: {Given three integers l, k, and n, returns a k-combination in

vector form as ða1; a2; . . . ; akÞ.}
2: base ( 0;
3: for i ¼ 1 to k� 1 do {Obtain ai in the k-combination.}
4: sum ( 0;
5: for shift ¼ 1 to n do
6: if sumþ n� shift

k� i

� �
< l then

7: sum ( sumþ n� shift
k� i

� �
;

8: else
9: break;
10: end if
11: end for
12: ai ( baseþ shift;
13: {Update the parameters for obtaining the next ai.}
14: n ( n� shift; l ( l� sum; base ( ai;
15: end for
16: ak ( baseþ l;
17: return ða1; a2; . . . ; akÞ;

The procedure obtains each entry in the k-combination
ða1; a2; . . . ; akÞ one by one from the first to the last. First notice
that the index l of a combinationwith a1 ¼ m satisfies that

1 þ
Xm�1

j¼1

n� j

k� 1

� �
� l �

Xm
j¼1

n� j

k� 1

� �
:

This is because the first n � 1
k � 1

� �
k-combinations are of the

form ð1; b2; . . . ; bkÞ (2 � b2 < b3 < � � � < bk � n), the next
n�2
k�1

� �
k-combinations are of the form ð2; b2; . . . ; bkÞ (3 � b2 <

b3 < � � � < bk � n), and so on.
Thus, the first entry a1 should be the largest number m

satisfying that
Pm�1

i¼1
n� i
k� 1

� �
< l. For example, for a given l, if

we find that
Pm��1

i¼1
n� i
k� 1

� �
< l � Pm�

i¼1
n� i
k� 1

� �
, then we can con-

clude that the entry a1 of the lth combination should be m�,
i.e., a1 ¼ m�.

In order to get the second entry a2, it is equivalent to
obtaining the ðl� sumÞth ðk� 1Þ-combination of the set

f1; 2; . . . ; n� a1g, where sum ¼ Pa1�1
i¼1

n� i
k� 1

� �
. This can be

proved as follows. Suppose that the lth k-combination is

ða1; a2; . . . ; akÞ ¼ ða1; a1 þ a02; . . . ; a1 þ a0kÞ:
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Since a1 < a2 < � � � < ak � n by the definition of
k-combination, we have 1 � a02 < � � � < a0k � n� a1. Thus,
ða02; a03; . . . ; a0kÞ is a ðk� 1Þ-combination of the set f1; 2;
. . . ; n� a1g. Thus, the original problem reduces to finding a
ðk� 1Þ-combination of the set f1; 2; . . . ; n� a1g. Since the
first ðk� 1Þ-combination ð1; 2; . . . ; k� 1Þ is mapped to the
k-combination ða1; a1 þ 1; . . . ; a1 þ k� 1Þ, which is the

ðPa1�1
i¼1

n� i
k� 1

� �þ 1Þth k-combination. Thus, the reduced prob-

lem is to find the ðl� sumÞth ðk� 1Þ-combination of the set

f1; 2; . . . ; n� a1g, where sum ¼ Pa1�1
i¼1

n� i
k� 1

� �
.

Therefore, in order to get a2, we first get the largest number

m such that
Pm�1

i¼1
ðn� a1Þ� i
ðk� 1Þ� 1

� �
< ðl� sumÞ. Let that number

bem�. Then, we can obtain a2 ¼ a1 þm�. We compute all the
remaining entries in the k-combination in a similar way.

Algorithm 2 implements the above idea in an iterative
way. We use an example to illustrate the algorithm. Assume
that we want to get the eighth three-combination of the set
S ¼ f1; 2; 3; 4; 5g, which should be f2; 3; 5g. The input argu-
ments to Algorithm 2 is l ¼ 8, k ¼ 3, and n ¼ 5.

First, we get a1. We go through the first iteration of the
outer loop with i ¼ 1 (Line 3). shift is first set to 1. Line 6
gives

sumþ n� shift

k� i

� �
¼ 0þ 5� 1

3� 1

� �
¼ 4

2

� �
¼ 6 < l ¼ 8:

Thus, we set sum to 6 (Line 7) and increase shift to 2. We
evaluate Line 6 again, which gives

sumþ n� shift

k� i

� �
¼ 6þ 5� 2

3� 1

� �
¼ 6þ 3 > l ¼ 8:

Thus, we jump out of the inner loop (ending at Line 11)
and get a1 ¼ baseþ shift ¼ 2 (Line 12). At this point, n, l,
and base are updated to n� shift ¼ 5� 2 ¼ 3, l� sum ¼
8� 6 ¼ 2, and a1 ¼ 2, respectively (Line 14).

To get a2, we go through the second iteration of the outer
loop with i ¼ 2. shift is first set to 1. Line 6 gives

sumþ n� shift

k� i

� �
¼ 0þ 3� 1

3� 2

� �
¼ 2 ¼ l:

Thus, we jump out of the inner loop (ending at Line 11)
and get a2 ¼ baseþ shift ¼ 2þ 1 ¼ 3 (Line 12). At this
point, n, l, and base are updated to n� shift ¼ 3� 1 ¼ 2,
l� sum ¼ 2� 0 ¼ 2, and a2 ¼ 3, respectively (Line 14).

Now, the outer loop is terminated. The algorithm finally
sets a3 ¼ baseþ l ¼ 3þ 2 ¼ 5 (Line 16). As a result, the
returned three-combination is ð2; 3; 5Þ, which is expected.

Note that the application of this procedure is not just lim-
ited to our BN learning problem, it is also useful in many
other applications, such as software testing [27]. It is
inspired by the algorithm proposed in [28]. We made some
revisions in order to make it fit for our application.

5 THE BN LEARNING ALGORITHM

In this section, we discuss our algorithm. Its overall flow is
shown in Fig. 1, while its pseudocode is shown in Algo-
rithm 3. In the pre-processing procedure, we compute all
local scores, store them in the global memory, and

randomly select an initial order. After the pre-processing
step, we perform the MCMC iteration. In each iteration, we
begin with generating a new order from the previous one
by randomly selecting two nodes from the previous order
and swapping them. Then we score the new order and
accept or reject it by applying the Metropolis-Hastings rule
[23]. The top graphs are then sorted and stored. After a
specified number of MCMC iterations, we return the best
graph we have obtained so far. The major subroutines of
our algorithm are discussed in detail in this section.

Algorithm 3. The proposed BN Learning algorithm.

1: Compute local scores lsði;piÞ for all possible combinations
of node vi and parent set pi with jpij � s;

2: Store all local scores in the local score table;
3: Randomly select an initial order �old;
4: oldScore ( �1; globalBestScore ( �1;
5: globalBestGraph ( NULL;
6: for iter ¼ 1 tomaxIterNums do
7: Generate a new order �new by swapping two nodes in the

old order �old;
8: newScore ( 0; newBestGraph ( NULL;
9: for each node vi in the order �new do
10: maxLocalScore ( �1;
11: for each parent set pi consistent with the order �new do
12: Look up local score lsði;piÞ in the local score table;
13: ifmaxLocalScore < lsði;piÞ then
14: maxLocalScore ( lsði;piÞ;
15: bestParentSet ( pi;
16: end if
17: end for
18: newScore ( maxLocalScoreþ newScore;
19: newBestGraph:connectðvi; bestParentSetÞ;
20: end for
21: Applying the Metropolis-Hastings rule on oldScore and

newScore to decide whether the order �new should be
accepted;

22: if the order �new is accepted then
23: �old(�new; oldScore ( newScore;
24: end if
25: if newScore > globalBestScore then
26: globalBestScore ( newScore;
27: globalBestGraph ( newBestGraph;
28: end if
29: end for
30: return globalBestGraph;

5.1 Pre-Processing

As shown in Fig. 1, our learning algorithm begins with a
pre-processing step, which includes initializing the order
and computing all local scores (refer to Equation (3)). As we
will show in Section 5.2, the scoring subroutine requires

Fig. 1. The overall flow of the proposed BN learning algorithm.
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computing each local score. Since the scoring subroutine is
repeated in each MCMC iteration, we need to repeatedly
compute each local score in each iteration. However, calcu-
lating each local score is time-consuming. Thus, instead of
recomputing local scores each time when they are needed,
we choose to compute local scores for all the possible combi-
nations of the node and its parent set at the pre-processing
stage. This strategy was also used in some previous works
[7], [8], [9]. We note that if we do not limit the size of a parent
set, then the number of all possible parent sets for the last
node in any given order is 2n�1, where n is the size of the net-
work. To reduce the complexity, we limit the size of a parent
set to a constant s, as proposed by de Campos and Ji [26].
Constraining the size of parent sets reduces the memory
requirement from exponential to polynomial. In summary,
in the pre-processing step, we compute the local score
lsði;piÞ for each node vi and each possible parent set pi with
size at most s, and store the result in the local score table. The
position in the table to store a local score lsði;piÞ is obtained
by applying the findIndex procedure shown in Algorithm 1
on the node index i and the parent set pi. Comparedwith the
previous strategy that uses a hash function to find the posi-
tion [7], [8], our method significantly reduces the time to cal-
culate the position, as will be demonstrated in Section 8.1.

In the previous works [7], [8], bit vectors were used to
generate every parent set consistent with a given order.
However, our experimental results indicated that using bit
vector representation is too slow: it is not scalable for net-
works with more than 30 nodes. This is because for the last
node in an order, each of the n� 1 nodes preceding it could
be its parent. Therefore, even if we limit the maximal size of
the parent sets to a constant, it is necessary to consider a

total of 2n�1 bit vectors to filter out the parent sets of size
larger than the limit. In our implementation, we generate
the combination directly when the maximal size of a parent
set is limited to a constant s 	 n. As a result, we only need

to consider
Ps

j¼0
n� 1
j

� �
potential parent sets for the last

node, which is much smaller than 2n�1.

5.2 Scoring

The scoring part is amajor subroutine of our algorithm,which
scores a given order. To effectively measure an order, we
introduce a new scoring function, which is an optimization of
the one proposed by Friedman and Koller [24]. It is well
known that given an arbitrary topological order, there exist
many graphs that are consistent with the order. We define the
score of an order � to be proportional to the maximal score
over all the graphs that are consistentwith the order, i.e.,

P ð� ;DÞ/ max
G2�

P ðG;DÞ: (5)

Since the score P ð�; DÞ is very small, we perform the
computation in the log-space. We apply logarithm on both
sides of Equation (5) and obtain

logP ð�; DÞ/ max
G2�

log P ðG;DÞð Þ:

In what follows, we refer to log P ð�; DÞ as the score of the
order �. Based on Equation (2) and the relation that
lsði;piÞ ¼ log P ðvi;pi;DÞ, we further have

log P ð�; DÞ / max
G2�

Xn
i¼1

lsði;piÞ:

The computation of the right-hand side of the above
equation is time-consuming, since we need to enumerate all
the graphs that are consistent with the order. A much faster
way to compute the right-hand side is based on the follow-
ing theorem.

Theorem 1.

max
G2�

Xn
i¼1

lsði;piÞ ¼
Xn
i¼1

max
pi2P�

lsði;piÞ;

where P� is the set of all possible parent sets of the node vi that
are consistent with the order �.

Proof. Assume that a graph Gm consistent with the order �
gives the maximal value maxG2�

Pn
i¼1 lsði;piÞ. In other

words,

Gm ¼ argmax
G2�

Xn
i¼1

lsði;piÞ:

We use the notation lsði;pi;GmÞ to represent the local
score for each node i in the graph Gm. It is clear that

Xn
i¼1

lsði;pi;GmÞ �
Xn
i¼1

max
pi2P�

lsði;piÞ

because each lsði;pi;GmÞ must be no greater than
maxpi2P� lsði;piÞ.

Now assume that
Pn

i¼1 lsði;pi;GmÞ is strictly less thanPn
i¼1 maxpi2P� lsði;piÞ. Then we can construct a new

graph G0
m, where the parent set of node i is the one gives

the value maxpi2P� lsði;piÞ. Then
Pn

i¼1 lsði;pi;G
0
mÞ is

greater than
Pn

i¼1 lsði;pi;GmÞ. This contradicts with our
assumption that Gm is the graph with the highestPn

i¼1 lsði;piÞ. Thus, we have

Xn
i¼1

lsði;pi;GmÞ ¼
Xn
i¼1

max
pi2P�

lsði;piÞ:

Since Gm gives the maximal value
maxG2�

Pn
i¼1 lsði;piÞ, we can conclude that

maxG2�
Xn
i¼1

lsði;piÞ ¼
Xn
i¼1

max
pi2P�

lsði;piÞ:
tu

Based on Theorem 1, we obtain an efficient way to com-
pute log P ð�; DÞ as follows

log P ð�; DÞ /
Xn
i¼1

max
pi2P�

lsði;piÞ: (6)

The scoring subroutine is shown at Lines 9 
 20 in Algo-
rithm 3. We refer to our scoring function as the max-based
scoring function, and the scoring function shown in Equa-
tion (4) as the sum-based scoring function. We notice that a
similar function to ours was previously proposed by Cooper
and Herskovits [29]. However, it is only used in the post-
processing part to find the best graph from the best order.
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Our max-based scoring function is better than the sum-
based scoring function in the following two aspects:

� Our scoring function only needs comparison and
assignment operations, avoiding the time-consum-
ing exponentiation and logarithm operations
required by the sum-based scoring function. The
runtime comparison in Section 8.1 confirms the
shorter runtime of our max-based scoring function.

� Using the max-based scoring function, we do not
need any post-processing to construct the best graph
from the best order. However, we need this step if
using the sum-based scoring function.

Our max-based scoring function produces similar results
as the sum-based scoring function, which will be demon-
strated in Section 8.2.

5.3 Order Generation and Metropolis-Hastings
Comparison

At the beginning of each iteration, we generate a new order
by randomly selecting two nodes vi and vj in the previous
order and swapping them, i.e., changing the order
ðv1; . . . ; vi; . . . ; vj; . . . ; vnÞ to the order ðv1; . . . ; vj; . . . ; vi; . . . ;
vnÞ. Only the scores of those nodes that are between the
node vi and the node vj, inclusively, need to be recalculated.

At the end of each iteration, we apply the Metropolis-
Hastings rule to decide whether to accept the new order or
not, as Linderman et al. did in [8]. This rule is the core of the
MCMC method, which ensures the convergence and tra-
versability of the MCMC method. By this rule, a new order
is accepted with probability

p ¼ min 1;
P ð�new;DÞ
P ð�old; DÞ

� 	
;

where P ð�new;DÞ and P ð�old; DÞ are the scores of the new
order and the previous order, respectively.

Since we actually compute the scores in the log space, the
new order is accepted if

logðuÞ < log P ð�new;DÞ � log P ð�old; DÞ;

where u is a random number generated uniformly from the
unit interval ½0; 1�.

6 INTERVENTIONS FOR CHARACTERIZING

PAIRWISE RELATIONSHIP

In this section, we present a way of adding interventions to
characterize the prior knowledge on the dependency
between a pair of nodes. In this paper, we use the phrases
artificial interventions and prior knowledge interchangeably.

Assume that a function pði;mÞ represents the confidence
of the prior knowledge on the existence of an edge from vm
to vi, the joint probability of a graph becomes

P ðG;DÞ ¼
Yn
i¼1

g jpij
Y
m2pi

pði;mÞ
Yri
k¼1

GðaikÞ
Gðaik þNikÞ

�
Yjvij
j¼1

GðNijk þ aijkÞ
GðaijkÞ :

(7)

From the above equation, we can see that if the confi-
dence of the prior knowledge pði;mÞ on the existence of an
edge in the Bayesian network is large, then the probabilities
of those graphs containing that edge will increase, and
hence those graphs are more likely to be sampled. In log
space, Equation (7) becomes

log P ðG;DÞ /
Xn
i¼1

lsði;piÞ þ
X
m2pi

log pði;mÞ
" #

; (8)

where lsði;piÞ is the local score defined in Section 3.3. We
call log pði;mÞ the pairwise prior function (PPF) for the nodes
vi and vm. It is also denoted as PPF ði;mÞ. Thus, Equation (8)
becomes

log P ðG;DÞ /
Xn
i¼1

lsði;piÞ þ
X
m2pi

PPF ði;mÞ
" #

: (9)

With this general form of adding pairwise prior knowl-
edge, we can meet different needs by applying different
PPFs.

In our design, we provide an interface for users. It is an
n� n matrix R, where n is the number of nodes in the
graph. Each entry in matrix R is between zero and one. A
value of Rði;mÞ between 0 and 0:5 means that it is unlikely
that there exists an edge from the node vm to the node vi; a
value of Rði;mÞ between 0:5 and 1 means that it is likely
that there exists an edge from the node vm to the node vi; a
value of Rði;mÞ equal to 0:5 means that there is no bias on
whether or not there exists such an edge from the node vm
to the node vi. This interface provides a convenient way to
specify the pairwise interventions. The actual PPF is a func-
tion on the values in the matrix R. Our experiment results
show that

� when R½i;m� approaches 1, a good choice of
PPF ði;mÞ is around 10;

� when R½i;m� approaches 0.5, PPF ði;mÞ should
approach 0;

� when R½i;m� approaches 0, a good choice of
PPF ði;mÞ is around �10.

Here 10 and �10 are chosen empirically to have a significant
impact on the ultimate score of a graph.

Based on the above-mentioned requirements, we pro-
pose the following cubic polynomial to transform the value
in the interface matrix R into the PPF:

PPF ði;mÞ ¼ 100ðR½i;m� � 0:5Þ3: (10)

7 GPU IMPLEMENTATION OF THE BN LEARNING
ALGORITHM

In this section, we discuss the implementation of the pro-
posed BN learning algorithm on a GPU.

7.1 The Architecture of the GPU

Fig. 2 shows the architecture of a typical GPU. The host, a
CPU, assigns tasks to and collects results from the GPU.
The GPU contains a number of blocks connected in the form
of a grid. Each block supports 0 
 512 threads. Each thread
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has a number of registers and a local memory. All the
threads within a block can access the shared memory of that
block. All the threads can also access the global memory of
the GPU. As we will show in Section 7.2, the GPU imple-
ments the pre-processing and the scoring parts of our algo-
rithm, since these parts can be parallelized across all the
nodes (see Equation (6)). The remaining parts of our learn-
ing algorithm are handled by the CPU: it passes a new order
to the GPU and gets the best graph and its score from the
GPU, as shown in Fig. 2.

7.2 Parallel Implementation

The GPU executes the pre-processing and the scoring parts
of the proposed BN learning algorithm. The mapping algo-
rithms described in Section 4 play an important role here,
which allow us to implement the BN learning algorithm on
the GPU efficiently.

7.2.1 Parallel Pre-Processing

In the pre-processing subroutine, local scores of every possi-
ble parent set for each node should be calculated from data.
It is time-consuming. Therefore, acceleration by GPUs is
essential.

Since each thread has a thread ID and a block ID in the
CUDA programming environment, we can assign a spe-
cific task to a thread based on its ID. The problem is how
to let a thread know the parent sets that it needs to han-
dle. It is equivalent to a combination indexing problem:
given a set of n elements, we want to index all the combi-
nations of the elements with at most s elements in a lexi-
cographic order, so that given an arbitrary valid index we
can easily get the corresponding combination. In other
words, we need to index the collection of all 0-combina-
tions, all 1-combinations, . . ., and all s-combinations. The
mapping algorithm described in Section 4.2 has already
given us a way to index all k-combinations for a specific
value k. We could apply that algorithm to index the col-
lection of all k-combinations for all k � s. For conve-
nience, we index these combinations in a descending
order on the value k. Algorithm 4 shows the procedure
that obtains a parent set corresponding to a given index.
It applies the procedure findComb shown in Algorithm 2.

Algorithm 4. Algorithm for each thread in the pre-proc-
essing subroutine.

1: {Given tid, bid, n, and numParentSet, where tid is the
thread ID within the block, bid is the block’s ID within the
grid, n is the size of the Bayesian network, and
numParentSet is the total number of possible parent sets
for each node.}

2: id ( bid � blocksizeþ tid;
3: if id < numParentSet then
4: comb ( findCombðid; n� 1Þ;
5: for node ¼ 1 to n do
6: parentSet ( recoverðcomb; nodeÞ;
7: localScore½numParentSet � nodeþ id�
8: ( calScoreðparentSet; nodeÞ;
9: end for
10: end if

In Algorithm 4, localScore stores all local scores keyed by
the combination of a node index and a parent set.
numParentSet refers to the total number of possible parent
sets of each node. A parent set of a node vi is a subset of the
set fv1; . . . vi�1; viþ1; . . . ; vng. Given that we limit the parent
set size to s, we have

numParentSet ¼
Xs
j¼0

n� 1

j

� �
:

The algorithm first calculates a thread’s ID in a grid
(Line 2). Only those threads with ID less than
numParentSet are used to calculate the local score
(Line 3). It then calls findComb to get the combination
corresponding to the thread ID (Line 4). Given a node
1 � node � n, its parent set needs to be recovered from
the combination (Line 6), because comb only points to
the indices of the nodes in the set of potential parents of
a node. The recovered parent set depends on both the
combination and the node. For example, suppose that a
graph has 6 nodes v1; v2; . . . ; v6. Let us consider the par-
ent set for node v4. It is a subset of the set
fv1; v2; v3; v5; v6g. If comb½� ¼ f1; 4; 5g, then it refers to the
first, fourth, and fifth node in the set fv1; v2; v3; v5; v6g.
The corresponding parent set should be recovered as
fv1; v5; v6g. Finally, the local score is computed according
to Equation (3) (Lines 7 and 8).

7.2.2 Parallel Scoring

In the scoring subroutine, threads have to get the local scores
from the local score table and return the best local score. The
procedure for each thread is shown in Algorithm 5.

In this algorithm, we first call the function findComb to
obtain the indices combination comb that the current thread
is in charge of. Then, comb is recovered into the actual par-
ent set parentset. Further, parentset is transformed into
another indices combination comb2, which is the indices
combination of the parentset in the set that includes all the
nodes except node itself. From comb2, the function
findIndex produces the index of the local score correspond-
ing to the parent set and the node, which is further fetched
into the shared memory.

As an example, consider a graph of 10 nodes v1; . . . ; v10.
Assume that in a specific order we are sampling, three

Fig. 2. The architecture of the GPU and its communication with the host
CPU.
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nodes v2; v6; v9 proceed the node v5. We want to fetch each
local score corresponding to the node v5 and a compatible
parent set. By calling findCombðÞ, the fifth thread gets
comb½� ¼ f1; 2g, which is recovered into the parent set
fv2; v6g because nodes v2 and v6 are the first and second
node proceeding the node v5 in the order, respectively. The
question is where in the local score table the thread should
fetch the local score corresponding to the node v5 and the
parent set fv2; v6g. Note that the local score table stores all
the possible parent sets of v5, which are subsets of the set
A ¼ fv1; v2; v3; v4; v6; v7; v8; v9; v10g. By transforming the par-
ent set fv2; v6g into the indices in the set A, we get f2; 5g
because nodes v2 and v6 are the second and the fifth node in
the set A, respectively. After passing f2; 5g to function
findIndexðÞ, the algorithm returns the index of the local
score the thread should fetch.

Algorithm 5. Algorithm for each thread in the scoring
subroutine.

1: {Given sharem, which is the shared memory within each
block, and posN , which is the number of nodes preceding
node.}

2: id ( bid � blocksizeþ tid;
3: if id < numParentSet then
4: comb ( findCombðid; posNÞ;
5: parentset ( recoverðcomb; nodeÞ;
6: comb2 ( transformðparentsetÞ;
7: index ( findIndexðcomb2; kÞ;
8: sharem½tid� ( localScore½index�;
9: end if
10: Find the best score and the best parent set within a block

using a reduction algorithm;

One useful feature of GPUs is coalescent memory
accesses. If consecutive threads access the memory with
consecutive addresses, the accesses can be coalesced into a
single access. The feature saves a lot of bandwidth and
makes programs more parallelizable. It is obvious that
Algorithm 4 can be perfectly coalesced because the consecu-
tive threads write to the consecutive addresses in the mem-
ory (Line 7 in Algorithm 4). However, it is not the case for
Algorithm 5, because the parent set each thread accesses is
pretty random.

7.2.3 Reduction Algorithm

After getting the local score, each thread stores the parent set
in local memory within the thread and the local score in a
sharedmemory within the block.We further need to find the
best score and the best parent set among all choices stored in
the shared memory. In order to do this efficiently, we modi-
fied a reducing algorithmmentioned in [30]. Of course, using
larger shared memory, traditional reduction algorithm can
work, too. Storing all parent set and the local scores requires
s times larger sharedmemory (s is the size limit of the parent
set, in our case, s ¼ 4). However, shared memory for each
block cannot satisfy such a demand. So we need other solu-
tions without larger requirement of sharedmemory.

Each thread has kept its local best parent set and the cor-
responding local best score. The problem is to pick the high-
est score among all the local best scores as well as its

corresponding parent set. We have to recover its original
position during a highly dynamic process. Our solution is
described as follows.

Before explaining the solution, we have to define an
effective part (i) of a shared memory is the only part of
memory (0 
 i) that have to be written. For every reduction,
higher scores are moved to the left half of the effective part.
At start, the effective part is all of the shared memory
(i ¼ block size). It reduces by half at the end of each reduc-
tion (i= ¼ 2). In the mean time, the original position of
higher scores are stored in the right half of the effective
part. Repeating this procedure on and on until the effective
part converges into 1 (i ¼¼ 1). The best score is moved to
the leftmost of the shared memory.

We then have to keep track of the ID of the original
thread that gives better value. That is, recovering the origi-
nal position of the best score. Since we store the positions of
the higher scores on the left half of the effective part at each
reduction stage, the original position can be back traced
accordingly.

An illustration of the algorithm is shown in Fig. 3.
Assume that a shared memory has 16 entries. We want to
move the highest score to the entry 0 of the array and record
the ID of the thread that gives the highest score in entry 1.
In the first reduction, thread 0 compares its value with the
value in entry 8. Then, thread 0 assigns entry 0 of the shared
memory with value �3 and entry 8 with 0, which is the ID
of the thread giving the larger value �3.

In the second reduction, entry 2 of the shared memory
has to be compared with entry 6 of the shared memory.
Since �2 is larger than �9, �2 is stored in entry 2. Note that
�2 is now from entry 6. However, the ID of the original
thread that gives the value �2 is store in entry 6þ 8 ¼ 14,
where 8 is the current number of threads involved. Then,
we update entry 6 with the original thread ID by copying
the value of entry 14 to entry 6. The total number of itera-
tions required to get the best score among a total of n scores
is log2 n. After obtaining the ID of the original thread that
gives the highest score, we can fetch the best parent set
from that thread.

8 EXPERIMENTAL RESULTS

In this section, we show the experimental results. We per-
formed experiments on both a general-purpose processor
and a GPU. The GPP we used is a 2.00 GHz Intel Xeon
E5-2620 processor. The GPU we used is an NVIDIA Tesla
M2090 GPU with 6 GB GDDR5 RAM. The version of our
NVIDIA CUDA compilation tool is V6.0.1. Note that our
serial and parallel optimizations can be applied to any plat-
form of CPUs and GPUs. Our GPU-based implementation
is described in Section 7, with the pre-processing and the

Fig. 3. An illustration of the reduction algorithm to find the highest score
in the shared memory.

WANG ET AL.: A LEARNING ALGORITHM FOR BAYESIAN NETWORKS AND ITS EFFICIENT IMPLEMENTATION ON GPUS 25



scoring parts of the BN learning algorithm performed on the
GPU and the remaining parts of the algorithm performed
on the CPU.

8.1 Speedup Study

In this set of experiments, we studied the speedup of our
GPU implementation with the proposed algorithmic
improvement. We set the maximal size of the parent set as 4,
i.e., s ¼ 4. The number of data is 600. The number of MCMC
iterations is 10;000. Note that once the number of MCMC
iterations and the size of the graph are fixed, the runtime of
our algorithm does not depend on the detailed value of the
data set. Thus, in the experiments, we use randomly gener-
ated graphs of various sizes as the targets to be learned and
generate the input data sets from these graphs.

We first studied the effect of our algorithmic improve-
ment. Our algorithm is an MCMC-based algorithm for
learning Bayesian networks. We compared it with the state-
of-the-art MCMC-based algorithm for learning Bayesian
networks described in [8], which applies bit vector to repre-
sent parent set, uses a hash table to store the local scores,
and uses a sum-based function for calculating scores. Our
proposed algorithm produces valid parent sets directly,
uses the mapping algorithm proposed in Section 4.1 to
obtain the local scores, and uses a max-based function for
calculating scores. Both our algorithm and the algorithm
from [8] are implemented on a general-purpose processor.

Fig. 4A compares the implementation that uses bit vector
to represent the parent sets with the implementation that
generates valid parent sets directly. Both of the implementa-
tions limit the size of parent sets. Both of them use a hash
table to store the local scores and a sum-based function to
calculate scores. However, as mentioned in Section 5.1, con-
ventional bit vector-based method requires generating all
possible parent sets in order to filter out the parent sets that
are inconsistent with the limitation on the parent set size.
We evaluated these two implementations on GPP using ran-
domly generated graphs with 15 
 30 nodes. For graphs
with more than 25 nodes, the runtime of the conventional
bit vector-based implementation increases dramatically.
Our experiment of a 35-node graph has been running for
eight days without even finishing preprocessing. Therefore,
we have to limit our comparison to graphs with no more

than 30 nodes. From the figure, we can see that the runtime
of the bit vector-based implementation grows exponentially
as the graph size increases. The largest speedup by generat-
ing valid parent sets directly is 1;393.

Figs. 4B and C are the results of the algorithmic improve-
ments. In Fig. 4B, we compared the GPP implementation
that uses a hash table with the implementation that uses our
mapping algorithm proposed in Section 4.1. Both of the two
implementations generate valid parent sets directly and use
the sum-based function for scoring. We used five randomly
generated graphs with 15 
 35 nodes. The result is shown in
Fig. 4B. From the figure we can see that using the proposed
mapping algorithm instead of a hash function reduces the
total runtime. The largest acceleration rate is 2.22.

Fig. 4C compares the implementation that uses the sum-
based scoring function (Equation (4)) with the implementa-
tion that uses the max-based scoring function (Equation (6)),
using four randomly generated graphs with 55 
 85 nodes.
Both of the two implementations generate valid parent sets
directly and use our proposed mapping algorithm to store
local scores. Since the exponentiation and the logarithm
operations consume much more time than the comparison
and the assignment operations, the implementation that
uses the max-based scoring function is faster than the
implementation that uses the sum-based scoring function.
The largest acceleration rate is 1.11.

Note that the speedup shown in Fig. 4A is gained from a
trivial implementation improvement, while the speedups
shown in Figs. 4B andC are gained from more sophisticated
algorithmic improvements. We now analyze the overall
speedup due to the algorithmic improvements. It is the
product of the speedup using the mapping algorithm and
the speedup using the max-based scoring function. From
the trend shown in Figs. 4B and C, the acceleration rates
due to the two algorithmic improvements do not decrease
with the graph size. We argue that for graphs with over
100 nodes, the speedup achieved from each algorithmic
improvement is no less than the largest speedup shown in
the figure. Thus, the speedup using the mapping algorithm
and the speedup using the max-based scoring function are
at least 2:22 and 1:11, respectively, for graphs with over
100 nodes. The overall speedup due to algorithmic improve-
ments is at least 2:22� 1:11 ¼ 2:46.

Fig. 4. (A) The runtimes for the implementation that uses bit vector to represent the parent sets and the implementation that generates valid parent
sets directly. (B) The runtimes for the implementation that uses a hash function and the implementation that uses the mapping algorithm proposed in
Section 4. (C) The runtimes for the implementation that uses the sum-based scoring function and the implementation that uses the max-based scor-
ing function.
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We now study the speedup when further implementing
the optimized algorithm using a GPU. Fig. 5 shows the
result. The optimized algorithm includes all the techniques
we have proposed, i.e., generating the valid parent sets
directly, using the proposed mapping method to store the
scores, and using the max-based scoring function. In the
figure, we compare the runtimes of both the GPP-based
implementation and the GPU-based implementation of the
optimized algorithm for different network sizes. Fig. 5A
plots the pre-processing runtimes, Fig. 5B plots the average
runtimes per iteration, and Fig. 5C plots the total runtimes,
which includes both the preprocessing runtime and the
MCMC iteration runtime. The figure indicates that we have
achieved a significant speedup using a GPU.

The detailed total runtimes of both the GPP-based imple-
mentation and the GPU-based implementation of the opti-
mized algorithm, together with the acceleration rates of the
latter implementation over the former implementation, are
listed in Table 2. We achieved at least 58� speedup for
graphs with over 100 nodes. For graphs with 125 nodes, the
GPP-based implementation needs approximately eight
weeks while the GPU-based implementation only needs
less than one day.

As shown in Table 2, when the optimized algorithm is
implemented on the GPU, we obtained an additional
speedup of at least 58 for graphs with over 100 nodes. In
summary, we have achieved a speedup of at least

2:46� 58 ¼ 143 for graphs with over 100 nodes through
both algorithm and GPU enhancements.

8.2 Accuracy Study

We also empirically study the accuracy of our algorithm. In
order to quantify the accuracy, we used measurements
called “specificity” (Sp) and “sensitivity” (Sn) described by
Tamada et al. [10]. It is defined as

Sp ¼ TP

TP þ FP
; Sn ¼ TP

TP þ FN
;

where TP (true positive) is the number of edges estimated
correctly, FP (false positive) is the number of estimated
edges that are not in the actual network, and FN (false nega-
tive) is the number of edges in the actual network but not
estimated [31]. Based on the definition of specificity and
sensitivity, it is clear that the more the number of edges esti-
mated correctly and the fewer the number of edges esti-
mated incorrectly, the higher the specificity and sensitivity
are and the more accurate the final result is.

We performed experiments on a randomly generated
graph with 25 nodes. The number of MCMC iterations is
10;000. The number of experimental data is 600. The specif-
icities and sensitivities for these two runs are shown in

Fig. 5. The pre-processing runtimes, the average runtimes per iteration, and the total runtimes of both the GPP-based implementation and the GPU-
based implementation.

TABLE 2
The Runtimes of the GPP-Based Implementation and the GPU-
Based Implementation and the Speedups of the GPU-Based

Implementation Over the GPP-Based Implementation

# of Nodes GPP runtime (sec.) GPU runtime (sec.) Speedup

25 354.59 113.84 3.11
35 2,577.83 207.28 12.43
45 10,601.43 417.08 25.42
55 37,358.70 917.77 40.70
65 108,062.71 1,988.31 54.34
75 240,399.92 4,224.38 56.91
85 495,218.78 8,492.83 58.31
95 928,907.06 15,876.35 58.50
105 1,735,958.87 27,948.19 62.11
115 3,088,128.50 47,766.58 64.65
125 4,850,759.00 77,311.83 62.74

Fig. 6. The specificity and sensitivity of the result for learning a 25-node
graph from 600 observed data. We ran our algorithm with 10,000 MCMC
iterations.
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Fig. 6. In the figure, the points from the left to the right are
generated as follows: the first point is obtained without add-
ing any prior knowledge on edges; the second point is
obtained by assigning “interface” R value (refer to Section 6)
0.7 (0.2) with a probability of 0.2 to edges which are mistak-
enly removed (added) when learned without any prior
knowledge; the third point is obtained by adding the same
artificial interventions used in generating the second point
but with a probability of 0.4; the fourth point is obtained by
assigning “interface” R value 0.8 (0.1) with a probability of
0.4 to edges which are mistakenly removed (added) when
learned without any prior knowledge; the fifth point is
obtained by adding the same artificial interventions used in
generating the fourth point but with a probability of 0.8.
Note that the confidence on the priors knowledge added
becomes stronger as we generate the points from the first to
the last. The higher specificity and sensitivity with stronger
prior suggests that our way of adding artificial interventions
based on prior knowledge of the existence of edges is able to
improve the accuracy of the final results.

We also compared the accuracy of our max-based scoring
function with the traditional sum-based function. We per-
formed experiments on three randomly generated graphs
with 15, 20, and 25 nodes, respectively. The number of
MCMC iterations is 10;000. The number of experimental
data is 600. Fig. 7 shows the specificities and sensitivities of
the two scoring functions. The difference between two scor-
ing functions is not significant. Both of the two scoring

functions are able to generate high quality result networks.
Taken into consideration that our max-based function is
faster, we suggest the users to use the max-based scoring
function instead of the sum-based scoring function.

8.3 Study of the GPU Thread-Level Parallelism

As we discussed in Section 7.2.1, to perform pre-processing
in parallel, we apply Algorithm 4 which lets each thread of
GPU compute n local scores (Line 5 of Algorithm 4), where
n is the number of the nodes in the network. The pre-proc-
essing subroutine can be further parallelized by letting each
thread compute only one local score. We call this algorithm
the one-score-per-thread algorithm. In this section, we
experimentally compare the performances of Algorithm 4
and the one-score-per-thread algorithm.

The setup of this experimental study is the same as that
of the experiment in Section 8.1: we choose the maximal
parent set size as 4 (i.e., s ¼ 4) and the data set size as 600.
The only difference between the one-score-per-thread algo-
rithm and Algorithm 4 is that the former uses one thread to
compute one local score while the latter uses one thread to
compute n local scores.

The runtimes of both algorithms for performing pre-
processing are shown in Table 3. From the table, we can see
that the runtimes of both implementations are very close.
For the network with 45 nodes, the runtime of Algorithm 4
is only 4:6 percent slower than that of the one-score-per-
thread algorithm. This means that Algorithm 4 has already
fully utilized the GPU.

Further, the one-score-per-thread algorithm does not
work for graphs over 45 nodes in our experiments. This is
because in the CUDA programming model, the maximal
number of blocks within a grid is fixed and the limitation is
65,535 blocks per grid for the GPU we use. As a result, the
one-score-per-thread algorithm is not scalable for larger
networks.

Given the above two facts, we use Algorithm 4 instead of
the one-score-per-thread algorithm in our implementation
of the parallel pre-processing.

8.4 Study of the Scalability over the Parent Set Size

As an important parameter in our algorithm, parent set size
s affects the runtime of the algorithm. We study the scalabil-
ity of our algorithm over the parent set size by measuring
the runtime of learning a randomly generated 25-node
graph using 10,000 MCMC iterations on GPP. The parent
set size s ranges from 2 to 6. The implementation contains
all the proposed algorithm optimizations. Fig. 8 shows how
runtime scales over the parent set size. We notice that the

Fig. 7. The specificity and sensitivity comparison of sum-based scoring
and max-based scoring.

TABLE 3
The Runtime Comparison between Algorithm 4 and the One-
Score-Per-Thread Algorithm in Performing Pre-Processing

# Nodes Algorithm 4 (sec.) One-Score-Per-Thread

Algorithm (sec.)

25 0.84 0.83
35 5.28 4.48
45 19.08 18.24
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runtime increases quickly with parent size over 4. As a
result, the algorithm is more suitable for sparse networks.
Since our algorithm assumes a limit on the parent size, in its
practical use, it is better that the user has an estimation of
how sparse the network is and then choose a proper parent
set size. In cases where the sparsity is not easy to estimate,
one can also sweep the parent set size and compare the
scores of the resultant graphs, because the scores are pro-
portional to the likelihood of the graphs.

9 CONCLUSION

Learning Bayesian networks from data is a challenging
computational problem. In this work, we have made two
major improvements to the basic MCMC-based BN learning
algorithm based on the work of Linderman et al. [8], which
leads to a 2.46-fold acceleration. By further implementing
our algorithm on a GPU, we achieved an additional 58-fold
acceleration. In total, we have accelerated the algorithm by
143�. As a result, our system is applicable to learning BNs
with up to 125 nodes, which is large enough for many bio-
logical applications. Besides, we add artificial interventions
for characterizing the prior knowledge on pairwise interac-
tions between nodes, which helps increase the accuracy of
the learning results. Therefore, our system provides a very
efficient tool for biologists. In our future work, we plan to
expand the optimized algorithm to a GPU cluster. The com-
plex operation of enumerating parent sets could be further
accelerated on those more powerful hardware platforms.
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